2017 Concepts of Agriscience

Program CIP: 01.9999 Agriculture, Agriculture Operations, and Related Sciences, Other

Direct inquiries to

Instructional Design Specialist
Research and Curriculum Unit
P.O. Drawer DX
Mississippi State, MS 39762
662.325.2510

Program Coordinator
Office of Career and Technical Education
Mississippi Department of Education
P.O. Box 771
Jackson, MS 39205
601.359.3461

Published by

Office of Career and Technical Education
Mississippi Department of Education
Jackson, MS 39205

Research and Curriculum Unit
Mississippi State University
Mississippi State, MS 39762

The Research and Curriculum Unit (RCU), located in Starkville, MS, as part of Mississippi State University, was established to foster educational enhancements and innovations. In keeping with the land grant mission of Mississippi State University, the RCU is dedicated to improving the quality of life for Mississippians. The RCU enhances intellectual and professional development of Mississippi students and educators while applying knowledge and educational research to the lives of the people of the state. The RCU works within the contexts of curriculum development and revision, research, assessment, professional development, and industrial training.
Table of Contents

Acknowledgments .. 3
Standards .. 5
Preface ... 6
Mississippi Teacher Professional Resources ... 7
Executive Summary .. 8
Course Outlines ... 10
Research Synopsis .. 11
Professional Organizations ... 15
Using This Document ... 16
Unit 1: Introduction to Agriculture and Environmental Science Technology 17
Unit 2: Agricultural Leadership and Career Development .. 19
Unit 3: Introduction to Experiential Learning (SAE) ... 21
Unit 4: Basic Soil Science ... 23
Unit 5: Introduction to the Science of Agricultural Plants ... 24
Unit 6: Introduction to the Science of Agricultural Animals ... 27
Unit 7: Introduction to the Science of Agricultural Environment ... 29
Unit 8: Introduction to the Science of Agricultural Mechanization ... 32
Unit 9: Introduction to Agribusiness and Entrepreneurship ... 34
Student Competency Profile ... 36
Appendix A: Industry Standards ... 38
Appendix B: 21st Century Skills ... 56
Appendix C: College and Career Ready Standards .. 59
Appendix D: International Society for Technology in Education Standards (ISTE) 66
Appendix E: Academic Standards .. 68
Acknowledgments

The Concepts of Agriscience curriculum was presented to the Mississippi Board of Education on February 16, 2017. The following persons were serving on the state board at the time:

- Dr. Carey M. Wright, State Superintendent of Education
- Mrs. Rosemary G. Aultman, Chair
- Dr. Jason S. Dean, Vice-Chair
- Mr. Buddy Bailey
- Mrs. Kami Bumgarner
- Dr. Karen Elam
- Mr. Johnny Franklin
- Mr. William Harold Jones
- Dr. John R. Kelly
- Mr. Charles McClelland

Jean Massey, Associate Superintendent of Education for the Office of Career and Technical Education at the Mississippi Department of Education, supported the RCU and the teachers throughout the development of the curriculum framework and supporting materials.

Gayle Fortenberry, Instructional Design Specialist for the Research and Curriculum Unit at Mississippi State University researched and authored this framework. gayle.fortenberry@rcu.msstate.edu.

Also, special thanks are extended to the teachers who contributed teaching and assessment materials that are included in the framework and supporting materials:

- Karla Turner Bailey, Claiborne County CTC, Port Gibson
- Sir Byron Bailey, Leake County High, Walnut Grove
- Kristy Camp, Choctaw County High School, Ackerman
- Karen Cook, Houston School of Science and Technology, Houston
- Jesse Cornelius, Nettleton High School, Nettleton
- Brad Gilmore, Kossuth High School, Kossuth
- Ray Nash, Biggersville High School, Biggersville
- Shelly Pulliam, Stone High School, Wiggins
- James Roberts, Sumrall High School, Sumrall
- Mike Tucker, Leake Central High School, Carthage
- Clint Young, Pontotoc Ridge Career & Tech Center, Pontotoc
- Anthony White, South Delta CTC, Rolling Fork

Appreciation is expressed to the following professionals, who provided guidance and insight throughout the development process:

Keith Coble, Professor, Agriculture Economics, College of Agriculture and Life Sciences at Mississippi State University
Gary Gammill, Welding Instructor, East Mississippi Community College, Golden Triangle Campus-Mayhew

Jessica Graves, Undergraduate Advisor for Animal and Dairy Sciences, School of Agriculture and Life Sciences at Mississippi State University

Richard Harkess, Professor, Plant and Soil Sciences, College of Agriculture and Life Sciences at Mississippi State University

Becky Smith, Assistant Extension Professor, Agricultural Economics, College of Agriculture and Life Sciences at Mississippi State University

Lee James, Program Coordinator – Agriculture, Office of Career and Technical Education and Workforce Development, Mississippi Department of Education, Jackson, MS

Bradley Skelton, Project Manager for the Research and Curriculum Unit at Mississippi State University

Sean Owen, Associate Research Professor, Research and Curriculum Unit at Mississippi State University

Betsey Smith, Associate Director for the Research and Curriculum Unit at Mississippi State University

Scott Kolle, Project Manager for the Research and Curriculum Unit at Mississippi State University

Jolanda Young, Educational Technologist for the Research and Curriculum Unit at Mississippi State University
Standards

Standards are superscripted in each unit and are referenced in the appendices. Standards in the Concepts of Agriscience Curriculum Framework and Supporting Materials are based on the following:

National Agriculture, Food and Natural Resources (AFNR) Career Cluster Content Standards
The National Council for Agricultural Education (The Council) shapes and strengthens school-based agricultural education at all levels. The Council and the National AFNR Career Cluster Content Standards Committee have developed the career pathway content standards to outline technical knowledge and skills required for future success within Agriculture and Environmental Science and Technology. The content standards are intended to provide a forward-thinking guide for what students should know and be able to do after completing this program of study. The standards referenced in this curriculum are reprinted with permission from the National Council for Agricultural Education, 1410 King Street, Suite 400, Alexandria, VA 22314. (800) 772-0939. Copyright © 2015. https://www.ffa.org/thecouncil/afnr.

College and Career-Ready Standards
The College and Career-Ready Standards emphasize critical thinking, teamwork and problem-solving skills. Students will learn the skills and abilities demanded by the workforce of today and the future. Mississippi adopted Mississippi College- and Career-Ready Standards (MCCRS) because they provide a consistent, clear understanding of what students are expected to learn so that teachers and parents know what they need to do to help them. Reprinted from http://www.mde.k12.ms.us/MCCRS.

International Society for Technology in Education Standards (ISTE)
Reprinted with permission from National Educational Technology Standards for Students: Connecting Curriculum and Technology, Copyright 2007, International Society for Technology in Education (ISTE), 800.336.5191 (U.S. and Canada) or 541.302.3777 (International), iste@iste.org, www.iste.org. All rights reserved. Permission does not constitute an endorsement by ISTE.

21st Century Skills and Information and Communication Technologies Literacy Standards
In defining 21st-century learning, the Partnership for 21st Century Skills has embraced five content and skill areas that represent the essential knowledge for the 21st century: global awareness; civic engagement; financial, economic, and business literacy; learning skills that encompass problem-solving, critical-thinking, and self-directional skills; and information and communication technology (ICT) literacy.

Mississippi Science Curriculum Framework
Mississippi Department of Education 2010 Mississippi Science Framework
Preface

Secondary career and technical education programs in Mississippi face many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through increased requirements for mastery and attainment of competency as documented through both formative and summative assessments.

The courses in this document reflect the statutory requirements as found in Section 37-3-49, Mississippi Code of 1972, as amended (Section 37-3-46). In addition, this curriculum reflects guidelines imposed by federal and state mandates (Laws, 1988, Ch. 487, §14; Laws, 1991, Ch. 423, §1; Laws, 1992, Ch. 519, §4 eff. from and after July 1, 1992; Carl D. Perkins Vocational Education Act IV, 2007; and Every Student Succeeds Act 2015.).
Mississippi Teacher Professional Resources

The following are resources for Mississippi teachers.

Curriculum, Assessment, Professional Learning, and other program resources can be found at The Research and Curriculum Unit’s website: http://www.rcu.msstate.edu

Should you need additional instructions regarding these resources, please call 662.325.2510.

The National FFA Organization website has educator resources, student organization guidelines and program information, professional organization information and experiential learning guidelines. All Agricultural Education teachers have been given free access to these resources at www.ffa.org.
Executive Summary

Pathway Description
Concepts of Agriscience is the foundation course for the agricultural and environmental science and technology (AEST) program. All students must complete Concepts of Agriscience before being allowed to enroll in the advanced courses of the program. The course serves as an introduction to the sciences, technologies, and applied practices of the progressive agriculture/agriscience industry. Emphasis is on an active learning environment enriched with technology and science-based applications. The course focuses on providing an opportunity for students to explore the different fields of the agricultural sciences and develop foundational skills and knowledge needed for advancement in other courses and programs. Concepts of Agriscience may be taught to students in grades 9 or 10. The course carries one Carnegie unit of credit that can count as a science elective credit for high school graduation.

Industry Certification
No national industry-recognized certifications are known to exist at this time in the field of agriscience. Competencies and suggested performance indicators in the Concepts of Agriscience course have been correlated, however, to the National Agriculture, Food, and Natural Resources (AFNR) Career Cluster Content Standards that have been reviewed and endorsed at the national level by the National Council on Agricultural Education.

Assessment
The latest assessment blueprint for the curriculum can be found at http://www.rcu.msstate.edu/Curriculum/CurriculumDownload.aspx.

Student Prerequisites
In order for students to experience success in the program, the following student prerequisites are suggested:

1. C or higher in English (the previous year)
2. C or higher in math (last course taken or the instructor can specify the math)
3. Instructor approval and TABE reading score (eighth grade or higher)
 or
1. TABE reading score (eighth grade or higher)
2. Instructor approval
 or
1. Instructor approval

Applied Academic Credit
The latest academic credit information can be found at http://www.mde.k12.ms.us/ACCRED/AAS.
Once there, click the “Mississippi Public School Accountability Standards Year” tab.
Review the appendices for graduation options and superscript information regarding specific programs receiving academic credit.
Check this site often as it is updated frequently.
Teacher Licensure
The latest teacher licensure information can be found at http://www.mde.k12.ms.us/educator-licensure.

Professional Learning
If you have specific questions about the content of any of training sessions provided, please contact the Research and Curriculum Unit at 662.325.2510.
Course Outlines

Course Description: Concepts of Agriscience is a one-credit course designed to introduce students to the sciences, technologies, and applied practices of the progressive agriculture/agriscience industry. Emphasis is on an active learning environment enriched with technology and science-based applications. The course serves as the entry-level course for other courses in agriculture, including horticulture and forestry. The focus is to begin the preparation of students for further study leading to successful careers in the agriculture industry.

Concepts of Agriscience (One Carnegie Unit) - Course Code: 991000

<table>
<thead>
<tr>
<th>Unit</th>
<th>Unit Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to AEST</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Agricultural Leadership and Career Development</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Introduction to Experiential Learning (SAE)</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Basic Soil Science</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Introduction to the Science of Agricultural Plants</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>Introduction to the Science of Agricultural Animals</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>Introduction to the Science of the Agricultural Environment</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Introduction to the Science of Agricultural Mechanization</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Introduction to Agribusiness and Entrepreneurship</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>140</td>
</tr>
</tbody>
</table>
Research Synopsis

Introduction
The agricultural sciences career cluster covers the broad field of occupations related to the production and use of plants and animals for food, fiber, aesthetic, and environmental purposes. According to the U.S. Department of Agriculture, during the next five years (2015-2020) 57,900 jobs are expected to open in food, agriculture, renewable natural resources, or the environment for graduates with bachelor’s or higher degrees in those areas. Almost half of those jobs will be in management and business; 27% in science, technology, engineering, and math in agriculture; 15% in sustainable food and biomaterials production; and 12% in education, communication, and government services. According to U.S. Department of Agriculture statistics, $167.3 billion was earned in agriculture, forestry, fishing, and hunting in the United States in 2014. The Mississippi Department of Agriculture and Commerce reports that agriculture is a $7.9 billion industry, employing approximately 29% of the state’s workforce.

AEST will target careers at the professional and technical levels in agriculture. Students enrolled in these courses should be better prepared to pursue degrees at the community college and four-year-college levels.

Needs of the Future Workforce
Data for this synopsis were compiled from the Mississippi Department of Employment Security (2015). Employment opportunities for each of the occupations are listed below:

Table 1.1: Current and Projected Occupation Report

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Employment</th>
<th>Projected Growth 2010-2020</th>
<th>Average Wage 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Current</td>
<td>Projected</td>
<td>Number</td>
</tr>
<tr>
<td>Agricultural and Food Science Technicians</td>
<td>190</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>Agricultural Equipment Operators</td>
<td>280</td>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td>Conservation Scientists</td>
<td>1,270</td>
<td>1,330</td>
<td>60</td>
</tr>
<tr>
<td>Environmental Engineers</td>
<td>890</td>
<td>950</td>
<td>60</td>
</tr>
<tr>
<td>Environmental Engineering Technicians</td>
<td>100</td>
<td>110</td>
<td>10</td>
</tr>
<tr>
<td>Environmental Scientists and Specialists, Including Health</td>
<td>920</td>
<td>990</td>
<td>70</td>
</tr>
<tr>
<td>Environmental Science and Protection Technicians, Including Health</td>
<td>30</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>Soil and Plant Scientists</td>
<td>70</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>Occupational Category</td>
<td>Employed</td>
<td>Job Growth</td>
<td>Earnings ($)</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Farmworkers and Laborers, Crop, Nursery, and Greenhouse</td>
<td>690</td>
<td>0</td>
<td>$9.39</td>
</tr>
<tr>
<td></td>
<td>690</td>
<td>0</td>
<td>$19,540</td>
</tr>
<tr>
<td>Farmworkers, Farm and Ranch Animals</td>
<td>440</td>
<td>20</td>
<td>$10.17</td>
</tr>
<tr>
<td></td>
<td>460</td>
<td>7.1</td>
<td>$21,150</td>
</tr>
<tr>
<td>First-Line Supervisors/Managers of Farming, Fishing, and</td>
<td>300</td>
<td>10</td>
<td>$22.61</td>
</tr>
<tr>
<td>Forestry Workers</td>
<td>310</td>
<td>3.3</td>
<td>$47,030</td>
</tr>
<tr>
<td>Foresters</td>
<td>650</td>
<td>20</td>
<td>$52,660</td>
</tr>
<tr>
<td></td>
<td>670</td>
<td>3.1</td>
<td>$17,730</td>
</tr>
<tr>
<td>Forest and Conservation Workers</td>
<td>70</td>
<td>10</td>
<td>$20.26</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>14.3</td>
<td>$42,150</td>
</tr>
<tr>
<td>Veterinarians</td>
<td>430</td>
<td>90</td>
<td>$39.15</td>
</tr>
<tr>
<td></td>
<td>520</td>
<td>20.9</td>
<td>$81,440</td>
</tr>
<tr>
<td>Veterinary Assistants and Laboratory Animal Caretakers</td>
<td>580</td>
<td>0</td>
<td>$10.30</td>
</tr>
<tr>
<td></td>
<td>580</td>
<td>0.0</td>
<td>$21,430</td>
</tr>
<tr>
<td>Veterinary Technologists and Technicians</td>
<td>610</td>
<td>190</td>
<td>$15.13</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>31.1</td>
<td>$31,470</td>
</tr>
</tbody>
</table>

Perkins IV Requirements

Curriculum Content

In compiling the research for the agricultural sciences cluster, face-to-face and telephone interviews were conducted with representatives of agricultural employers and agencies. The following comments summarize the results of these interviews:

Summary of Standards

- While opportunities to enter farming on a full-scale commercial enterprise basis are limited, opportunities do exist and are expected to increase as current operators retire and begin to rent their land to companies and individuals. Opportunities are also expected to increase for consultants and technicians who support production enterprises by providing specialized services to producers.

- There was general agreement among all interviewed that students need to better develop skills related to leadership; teamwork; communication; and work ethic, habits, and values. All respondents also indicated that a basic knowledge of economics, recordkeeping, budgeting, and business decision-making skills will be essential in today’s “lean” environment.

- Opportunities for high school graduates in all fields of agriculture are limited to the basic entry-level positions. More abundant opportunities exist for students who have received advanced training at the community college or university level.

- All respondents agreed that a college and career foundation of knowledge and skills existed across all major pathways related to the following themes: leadership and personal development; principles of plant science and production; principles of soil science and air and water quality; principles of agricultural power, structures, and technology; and principles
of economics and management. A sixth theme, principles of animal science and production, exists for students in the AEST and agriculture and natural resources pathways.

- All respondents agreed that students in all pathways should be exposed to the process by which agricultural products are grown, managed, harvested, processed, and marketed. As students study this process, they should also be exposed to the different careers that are involved in all segments of the industry.
- The role of federal and state agencies, including the USDA, OSHA, FDA, and EPA, should be discussed. Also, the role of agricultural organizations, such as the Poultry Association, Nurseryman’s Association, and Farm Bureau, needs to be investigated.

Academic Infusion
The AEST curriculum is tied to the Mississippi College- and Career-Ready Standards. The curriculum provides multiple opportunities to enhance and reinforce academic skills. Because students will be required to communicate effectively in the classroom as well as in the workforce, there is a considerable amount of reading and writing in this curriculum. Overall, the AEST curriculum requires students to make presentations, read technical manuals, and use strategic and critical-thinking skills to solve real-world problems. The location of the College- and Career-Ready Standards for each unit is located in Appendix E.

Transition to Postsecondary Education
The latest articulation information for secondary to postsecondary can be found at the Mississippi Community College Board website: http://www.mccb.edu/.

Best Practices
The premise of the success of all school-based, agricultural-education programs is focused on the implementation of the three-circle model, which depicts the three major components of the program interlocked and working together as one. The three components are classroom and laboratory instruction, experiential learning through supervised agricultural experience (SAE) programs for individual students, and participation in the CTE student organization for agriculture education, the National FFA organization.

Classroom and Laboratory Instruction
The classroom and laboratory component of the school-based, agricultural-education three-circle model is the foundation of the success of the other two components, SAE and FFA. Through contextual learning, students in agricultural education can learn the science, business, and technology of modern agriculture through innovative instructional technologies, differentiated instruction, and cooperative learning.

Innovative Instructional Technologies
Recognizing that today’s students are digital learners, the classroom should be equipped with tools that will teach them in the way they need to learn. The AEST curriculum teacher’s goal should be to include teaching strategies that incorporate current technology. It is suggested that each classroom house a classroom set of smart tablets and one teacher laptop. To make use of the latest online communication tools, such as wikis, blogs, and podcasts, the classroom teacher is encouraged to use a learning-management system that introduces students to teaching and learning strategies in an online environment and places the responsibility of learning on the student.
Differentiated Instruction
All students are unique and possess an individualized learning style. Differentiated instruction is an approach to teaching that addresses the differences in learning styles by providing alternative teaching and assessment methods that reach across the spectrum of student needs in the classroom. By differentiating instruction in AEST, teachers can more effectively reach students and address their strengths and weaknesses, therefore increasing student success. The implementation of various forms of technology; use of alternative assessments, such as rubrics and problem-based assessment; and utilizing hands-on and work-based learning opportunities in the program of instruction truly enhance the quality of the curriculum presentation.

Cooperative Learning
Cooperative learning can help students understand topics when independent learning cannot. Therefore, you will see several opportunities in the Concepts of Agriscience curriculum for group work. To function in today’s workforce, students need to be able to work collaboratively with others and solve problems without excessive conflict. The Concepts of Agriscience curriculum provides opportunities for students to work together and help each other complete complex tasks.

Experiential Learning (SAE)
The experiential learning, or SAE, component has long been an integral part of the school-based, agricultural-education three-component model. Each student is encouraged to explore their career interests and plan an experiential, service, and/or work-based learning program to guide them to their career goals. This SAE program guides the student as they maintain a record-keeping system of the time and money invested, as well as the skills gained from their experiences. The experiential-learning projects can be used in a variety of situations to reinforce and complement classroom theory and content. The experiential-learning project consists of entrepreneurship, placement, research/experimentation, and exploratory discovery and spans the duration of program enrollment.

CTE Student Organizations
As the third part of the school-based, agricultural-education program, the FFA component is the showcase, or focal point, of leadership, growth, and development for students. The FFA is the student organization for the Concepts of Agriscience curriculum. The FFA offers many opportunities for student success, such as leadership development, career-development events, degrees of attainment, awards and scholarships, and community service. The FFA provides students with growth opportunities and competitive events. It also opens the doors to the world of agriculture and scholarship opportunities.

Conclusion
The AEST curriculum is one of Mississippi’s most comprehensive agriculture curricula. It is a systematic program of instruction, and students who complete this program are well equipped for a variety of careers and the ability to make informed choices regarding food, fiber, and managing natural resources. Instructors are urged to encourage AEST Concepts of Agriscience students to pursue postsecondary educational opportunities at community colleges and universities in Mississippi.
Professional Organizations

Agricultural Education Division of the Association for Career and Technical Education. May be found at http://www.acteonline.org/

American Association for Agricultural Education. May be found online at http://aaaeonline.org/

Mississippi ACTE. May be found online at http://www.mississippiacte.com/

Mississippi Association of Vocational Agriculture Teachers (MAVAT). May be found online at http://www.mississippiiffa.org

National Association of Agricultural Educators. May be found online at http://www.naae.org/

National Association of Supervisors of Agricultural Education. May be found online at https://www.ffa.org/thecouncil/nasae/

National FFA Alumni Association. May be found online at https://www.ffa.org/getinvolved/alumni/

National FFA Foundation, Inc. May be found online at https://www.ffa.org/support/foundation/

National Farm and Ranch Business Management Education Association. May be found online at http://www.nfrbmea.org/

National Postsecondary Agricultural Student Organization. May be found online at http://www.nationalpas.org/

National Young Farmer Educational Association. May be found online at http://www.nyfea.org
Using This Document

Suggested Time on Task
This section indicates an estimated number of clock hours of instruction that should be required to teach the competencies and objectives of the unit. A minimum of 140 hours of instruction is required for each Carnegie unit credit. The curriculum framework should account for approximately 75–80% of the time in the course.

Competencies and Suggested Objectives
A competency represents a general concept or performance that students are expected to master as a requirement for satisfactorily completing a unit. Students will be expected to receive instruction on all competencies. The suggested objectives represent the enabling and supporting knowledge and performances that will indicate mastery of the competency at the course level.

Integrated Academic Topics, 21st Century Skills and Information and Communication Technology Literacy Standards, ACT College Readiness Standards, and Technology Standards for Students
This section identifies related academic topics as required in the Subject Area Testing Program (SATP) in Algebra I, Biology I, English II, and U.S. History from 1877, which are integrated into the content of the unit. Research-based teaching strategies also incorporate ACT College Readiness standards. This section also identifies the 21st Century Skills and Information and Communication Technology Literacy skills. In addition, national technology standards for students associated with the competencies and suggested objectives for the unit are also identified.
Competencies and Suggested Objectives

Unit 1: Introduction to Agriculture and Environmental Science Technology

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>DOK</th>
<th>Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Examine the impact of the agriculture and natural resources industry on society.</td>
<td>1</td>
<td>ABS, AS, CS, CRP, ESS, NRS, PS, PST</td>
</tr>
<tr>
<td></td>
<td>a. Investigate the scope of the agricultural and natural resources industry:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Global</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● National</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● State</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● County</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Examine the history of agricultural practices and technologies utilized in animal and plant production.</td>
<td>3</td>
<td>BS, CRP, CS</td>
</tr>
<tr>
<td></td>
<td>c. Describe the major areas of agriculture and environmental science and technology:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Animal sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Plant sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Agricultural business</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Environmental services</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Food sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Agricultural mechanization and technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Natural resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Precision agriculture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Describe an application of science in agriculture and environmental science technology.</td>
<td>3</td>
<td>BS, CRP, CS</td>
</tr>
<tr>
<td></td>
<td>a. Describe basic and applied sciences that relate to agriscience.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Explore the impact of biotechnology on agriculture and environmental science.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Examine current trends and technologies impacting modern agricultural and environmental practices.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Design a research project utilizing the scientific method on an area of study from within this course of study.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Apply standard agricultural and natural resources safety practices.</td>
<td>2</td>
<td>AS, BS, ES, NRS, PS, PST</td>
</tr>
<tr>
<td></td>
<td>a. Explore OSHA safety standards as they relate to the agricultural classroom, laboratory, and the workplace.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Interpret information on a material safety data sheet (MSDS).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Describe general safety procedures, including safety color codes, fire extinguishers, first aid kits, and emergency exits.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Apply safety precautions related to dress and personal protection equipment (PPE) in the agriculture industry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. List procedures for preventing safety hazards in the shop, lab, farm, and workplace.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Fire (fire triangle)
- Tripping hazards
- Bodily injury
- Chemical explosions
- Lifting
Unit 2: Agricultural Leadership and Career Development

Competencies and Suggested Objectives

1. Explore the integral relationship between the FFA and agricultural education.
 a. Examine historical events that shaped school-based agricultural education:
 - Smith-Hughes Act (1917)
 - Establishment of the National FFA Organization (1928)
 - Mississippi FFA Association chartered (1934)
 - Establishment of the New Farmers of America (1935)
 - Public Law 740 (1950)
 - Merger of the FFA and the NFA (1965)
 - Female membership (1969)
 - Organizational name change (1988)
 b. Identify types of FFA membership:
 - Active
 - Collegiate
 - Alumni
 - Honorary
 c. Distinguish among the degree levels of FFA membership and describe the requirements for each:
 - Discovery FFA degree
 - Greenhand FFA degree
 - Chapter FFA degree
 - State FFA degree
 - American FFA degree

2. Explore the role of the FFA in promoting leadership, personal growth, and career success through 21st Century Skills Standards.
 a. Explain the role of effective leadership.
 b. Have students self-evaluate their personal leadership traits and develop a plan for improvement.
 c. Identify and put into practice FFA activities that promote personal and career development, teamwork, and leadership skills:
 - Public speaking and communication skills
 - Career-development events
 - Proficiency awards
 - Community service activities
 - Conventions and leadership conferences
 d. Demonstrate basic parliamentary procedures:
● Conducting a meeting
● Stating a main motion
● Voting on a motion
● Understanding the use of the gavel
● Distinguish between types of motions: main, subsidiary, incidental, and privileged.

3. Describe the role of 21st Century Skills, work ethic, and values in establishing and building a successful career. **DOK 3, CRP, CS**
 a. Define and describe universally accepted work ethics and values as applied to agricultural, food, and natural resources careers:
 ● Trustworthiness
 ● Respect
 ● Responsibility
 ● Fairness
 ● Caring
 ● Citizenship
 b. Identify career-related values and ethics promoted through FFA activities:
 ● Action
 ● Relationships
 ● Vision
 ● Character
 ● Awareness
 ● Continuous improvement
 ● Personal growth
 ● Time management
 ● Communication
 ● Decision-making
 ● Flexibility/adaptability
 c. Practice work ethic and values in the AEST classroom and laboratory, student organization activities, and in experiential learning projects.

4. Investigate careers associated with the agricultural industry and write a report with details about the career, including: **DOK1, CRP, CS**
 ● Description of the career
 ● Educational/training requirements
 ● Salary range
 ● Job outlook
Competencies and Suggested Scenarios

1. Describe the purposes and requirements of the supervised agricultural experience (SAE) program. **DOK 1, ABS, CRP, CS**

a. Establish objectives for the SAE program:
 - Personal growth
 - Career development
 - Responsible citizenship
 - Practical application of work experience and/or skill attainment

b. Determine the benefits of participation in an SAE program:
 - Assist with career and personal choices
 - Apply business practices, such as record keeping and money management
 - Nurture individual talents and develop a cooperative attitude
 - Build character and encourage citizenship and volunteerism
 - Provide an environment for practical learning

c. Describe the types of SAE programs:
 - Exploratory
 - Research
 - Experimental
 - Analytical
 - Invention
 - Placement/internship
 - Entrepreneurship/ownership
 - School-based enterprise
 - Service learning
 - Improvement project

2. Develop a personal plan for the SAE program. **DOK 2, ABS, CRP, CS**

a. Determine the availability of time and money/resources to invest.

b. Set short-range goals for the SAE program.

c. Project long-range goals for the SAE program.

d. Complete a training agreement for an SAE project.

e. Establish requirements of student, parents, supervisor, and/or employer.

3. Develop a record-keeping system for an individual student’s SAE program. **DOK 3, ABS, CRP, CS**

a. Determine types of records to keep:
 - Hours worked/spent on a project or enterprise
 - Inventory of assets
 - Expenses
● Income
● Skills attained during a project or enterprise
● Leadership record
● Community service record
● Journal of experiences

b. Maintain records using an electronic/computer-based system of record keeping for the SAE program.
Competencies and Suggested Objectives

1. Describe soil and discuss the importance it plays in agriculture production. \(\text{DOK2, CS, ES, NRS, PS} \)

2. Identify and describe the physical composition of soil. \(\text{DOK1, CS, ESS, NRS} \)
 - Air
 - Water
 - Organic matter
 - Mineral matter (e.g., sand, silt, and clay)

3. Identify and describe the physical properties of soil. \(\text{DOK1, ESS, NRS} \)
 a. Describe the characteristics of various types of soil texture (e.g., sand, silt, clay).
 b. Describe the physical structure of soil.
 c. Discuss factors that influence the color of soil:
 - Mineral content
 - Water
 - Parent material

4. Demonstrate how to use the USDA Textural Triangle to classify soil texture. \(\text{DOK3, ESS, NRS} \)

5. List the factors that impact soil formation. \(\text{DOK1, ESS, NRS} \)
 - Parent materials
 - Climate
 - Living organisms
 - Time
 - Topography

6. Describe a soil horizon and the horizons/layers of a typical soil profile. \(\text{DOK2, ESS, NRS} \)
 - Horizon/Layer O
 - Horizon/Layer A
 - Horizon/Layer B
 - Horizon/Layer C
 - Horizon/Layer R
Unit 5: Introduction to the Science of Agricultural Plants

Competencies and Suggested Objectives

1. **Explore the physiology of plants.**
 - **DOK 2, PS**
 a. Compare the physiological processes of respiration, photosynthesis, and transpiration as they affect plant growth.
 b. Examine the process of plant growth, including cell division, cell elongation, and cell differentiation.

2. **Investigate plant anatomy.**
 - **DOK 1, PS**
 a. Draw and label a diagram of the anatomy of a flowering plant:
 - Roots
 - Stem
 - Leaf
 - Flower
 b. Describe the root system of a plant, including diagrams or drawings of the types of root systems, the structure of a root, and the function of roots on a plant:
 - Type: fibrous, taproot
 - Structure: root cap, root hair
 - Function: anchor the plant
 c. Describe a plant stem, including a diagram or drawing of the types of stems found on plants, the structure of a stem, and the function of stems on plants:
 - Type: woody, herbaceous
 - Structures: xylem, phloem, lateral bud, terminal bud
 - Function: transport water and nutrients
 d. Describe plant leaves, their function, diagrams or drawings of leaf structures, and the various types of leaves found on plants:
 - Types: monocot, dicot, broadleaf, narrowleaf
 - Function: photosynthesis
 e. Describe a plant flower, including its function, a diagram or drawing of flower parts, and a description of the various types of flowers found on plants:
 - Types: complete and incomplete
 - Structures: pistil, stamen, sepal, petal
 - Function: seed production and reproduction

3. **Investigate common methods of plant reproduction.**
 - **DOK 2, PS**
 a. Compare and contrast sexual and asexual reproduction in plants.
 b. Examine the process of seed formation, including pollination and fertilization in sexual reproduction.
 c. Compare dicotyledonous and monocotyledonous seeds.
d. Identify the parts of a seed and associate each part with its function:
 ● Epicotyl
 ● Hypocotyl
 ● Cotyledon
 ● Seed coat
 ● Endosperm
 ● Radicle

e. Dissect a monocot and a dicot seed and describe the differences between the two.

f. Describe and apply factors essential to seed germination:
 ● Water
 ● Light
 ● Temperature
 ● Air

g. Conduct a simple germination test on a packet of seeds, calculate the percentage of seeds that germinate, and determine a germination ratio.

h. Describe the methods of asexual reproduction in plants:
 ● Cuttings
 ● Grafting
 ● Layering
 ● Separation and division
 ● Tissue culture/micro propagation

4. Discuss classification methods for plants. **DOK1, PS**
 a. Identify and describe the basic life cycles of a plant, including annual, biennial, and perennial.
 b. Describe the use of scientific classification systems in plant science, with emphasis on the use of the genus, species, variety, and cultivar in plant names.

5. Classify the different plant production enterprises in Mississippi. **DOK2, PS**
 a. Describe grain and cereal grain production and list the common crops grown in the state:
 ● Corn
 ● Wheat
 ● Soybeans
 ● Oats
 ● Rice
 b. Describe oil and sugar crop production and list the common crops grown in the state:
 ● Sorghum
 ● Soybeans
 ● Corn
 c. Describe fiber and fuel crop production and list the common crops grown in the state:
 ● Cotton (fiber)
<table>
<thead>
<tr>
<th>d. Describe fruit, vegetable, and nut crop production and list the common crops grown in the state.</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Sweet potatoes</td>
</tr>
<tr>
<td>● Peanuts</td>
</tr>
<tr>
<td>● Garden vegetables</td>
</tr>
<tr>
<td>● Pecans</td>
</tr>
<tr>
<td>● Watermelon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>e. Describe ornamental crop production and list the common crops grown in the state:</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Poinsettias</td>
</tr>
<tr>
<td>● Begonias</td>
</tr>
<tr>
<td>● Petunias</td>
</tr>
<tr>
<td>● Sunflower</td>
</tr>
<tr>
<td>● Trees</td>
</tr>
<tr>
<td>● Shrubs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>g. Describe forages and turf crop production and list the common crops grown in the state:</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Bermuda grass</td>
</tr>
<tr>
<td>● St. Augustine grass</td>
</tr>
<tr>
<td>● Centipede grass</td>
</tr>
<tr>
<td>● Fescue</td>
</tr>
<tr>
<td>● Bahia grass</td>
</tr>
<tr>
<td>● Ryegrass</td>
</tr>
<tr>
<td>● Clover</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>h. Describe forestry and list the types of forestry production enterprises in the state:</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Pine plantations</td>
</tr>
<tr>
<td>● Hardwoods</td>
</tr>
<tr>
<td>● Fuel source (poplar)</td>
</tr>
</tbody>
</table>
Unit 6: Introduction to the Science of Agricultural Animals

Competencies and Suggested Objectives

1. **Explore common terminology associated with the agricultural animal industry.**
 - a. Identify the terms associated by species and stage of life:
 - Cattle (bull, calf, heifer, steer, cow)
 - Sheep (lamb, ewe, ram, wether)
 - Swine (piglet, gilt, sow, boar, barrow)
 - Goats (kid, doe, buck, wether)
 - Horses (foal, colt, filly, mare, stallion, gelding)
 - Chickens (chick, hen, rooster, pullet, capon, cockerel)
 - Fish (fry, fingerling, adult)

2. **Investigate the anatomy and physiology of animals.**
 - a. Diagram the major components of an animal cell and list their functions:
 - Cell membrane
 - Cytoplasm
 - Endoplasmic reticulum
 - Golgi apparatus
 - Mitochondrion
 - Nucleus
 - Nucleolus
 - Ribosomes
 - Vacuoles
 - b. Explain animal growth and reproduction by cell mitosis and meiosis.
 - c. Identify the basic body systems and their function:
 - Skeletal
 - Muscular
 - Nervous
 - Respiratory
 - Circulatory
 - Reproductive
 - Digestive
 - Urinary
 - Endocrine

3. **Describe important elements of digestion and nutrition in animals.**
 - a. Associate each of the six major classes of nutrients with their roles and functions:
 - Proteins
 - Carbohydrates
<table>
<thead>
<tr>
<th>4. Examine the role of genetics and breeding in animal production. DOK 2, AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Define and explain basic concepts of heredity and genetics:</td>
</tr>
<tr>
<td>● Genetics</td>
</tr>
<tr>
<td>● Heredity</td>
</tr>
<tr>
<td>● Genes</td>
</tr>
<tr>
<td>● Homogeneous</td>
</tr>
<tr>
<td>● Heterogeneous</td>
</tr>
<tr>
<td>● Dominant</td>
</tr>
<tr>
<td>● Recessive</td>
</tr>
<tr>
<td>b. Identify and explain the reproduction process in mammals, poultry, and catfish.</td>
</tr>
<tr>
<td>c. Define and describe breeding processes, including natural mating, artificial insemination, and embryo transfer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Explore the agricultural animal industry. DOK 1, CRP, AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Identify the different animal enterprises in Mississippi:</td>
</tr>
<tr>
<td>● Beef and dairy cattle</td>
</tr>
<tr>
<td>● Horse</td>
</tr>
<tr>
<td>● Swine</td>
</tr>
<tr>
<td>● Poultry</td>
</tr>
<tr>
<td>● Aquaculture</td>
</tr>
<tr>
<td>● Goats and sheep</td>
</tr>
<tr>
<td>● Companion animals</td>
</tr>
</tbody>
</table>
Unit 7: Introduction to the Science of Agricultural Environment

Competencies and Suggested Objectives

1. **Explain the basic life needs that the environment provides.**
 - Define terms associated with the environment:
 - Abiotic
 - Biotic
 - Climate
 - Latitude
 - Longitude
 - Altitude
 - Habitat
 - Ecosystem
 - Organism
 - Summarize the role of humans in maintaining the quality of the environment.

2. **Describe ecosystems and how they function within the environment.**
 - Explain how food, water, shelter, and space influence a habitat.
 - Describe how the climate influences agriculture.
 - Describe the hydrologic (water) cycle and its influence on ecosystems.
 - Diagram energy transfer in an ecosystem using food chains and food webs.
 - Describe the types of ecosystems that are prevalent locally, statewide, and nationally:
 - Marine
 - Freshwater
 - Terrestrial

3. **Relate the importance of natural resources and their relationship to conservation and preservation.**
 - Compare and contrast the principles of conservation verses the preservation of natural resources.
 - Classify natural resources as exhaustible/nonrenewable or nonexhaustible/renewable:
 - Exhaustible/nonrenewable
 - Fossil fuels (e.g., oil, natural gas, minerals)
 - Nonexhaustible/renewable
 - Wildlife
 - Air
 - Water
 - Soil
 - Plants
4. Describe the importance of the outdoor recreation industry to natural resources management.
 a. Investigate various aspects of the outdoor recreation industry and report on the findings.
 b. Define natural resources management.
 c. Explain why natural resources management and sustainability are critical to maintaining the environment for future use.
 d. Explore the various opportunities for outdoor recreation in the state and identify their economic and environmental impact on natural resources.

5. Describe forestry as a science and discuss basic forest-management concepts.
 a. Describe the beneficial influences of trees in the environment:
 - Influence on climate
 - Control runoff
 - Water retention
 - Environment for fish
 - Flood prevention and water flow
 - Wildlife habitat
 - Prevent soil and wind erosion
 - Removal of gas pollution in air
 - Removal of particulates in the air
 - Social value
 - Economic value
 b. Define forestry and forestry-management terms:
 - Forestry
 - Forest land
 - Timberland
 - Evergreen trees
 - Reforestation
 - Silviculture
 - Deciduous trees
 - Clear cutting
 - Thinning
 - Control burns
 - Selective cutting
 c. Explain growth rings in trees.
 d. Discuss the properties of wood and how they correlate to the most productive use (e.g., veneers, lumber, and paper).

6. Explain the concept of stewardship and sustainability of our natural resources.

7. Explore resource conservation and alternative energy sources.
 a. Explore alternative energy sources:
- Solar
- Wind
- Hydroelectric
- Geothermal
- Nuclear
Unit 8: Introduction to the Science of Agricultural Mechanization

Competencies and Suggested Objectives

1. Identify commonly used agricultural mechanic tools and classify as a hand or power tool:
 DOK 1, PST
 - Curved-claw hammer
 - Measuring tape
 - Standard screwdriver
 - Philips screwdriver
 - Needle-nose pliers
 - Lineman’s pliers
 - Electric drill
 - Circular saw
 - Reciprocating saw
 - Safety glasses

2. Identify and describe the use of mechanical equipment commonly found in agricultural mechanization:
 DOK 1, PST
 - Tractor
 - Cultivator
 - Plow
 - Spreader
 - Planter
 - Sprayers
 - Rotary mower
 - Baler
 - Rake
 - Combine
 - Picker
 - Backhoe
 - Front-end loader

3. Explore basic principles of electricity:
 DOK 1, PST
 a. Examine basic principles of electricity:
 - Magnetism
 - Circuits
 - Amps
 - Watts
 - Volts
 b. Calculate amps, watts, and volts usage.
c. Identify basic electrical equipment:
 ● Receptacles
 ● Insulators
 ● Conductors
 ● Switches

d. Assemble a simple electrical wiring project.

4. Explore basic principles of plumbing systems. DOK 2, PST
 a. Compare the advantages and disadvantages of PVC, C-PVC, polyethylene, PEX, and copper pipes.
 b. Identify pipe fittings for different applications:
 ● Valve
 ● Elbow
 ● Coupling
 ● Tee
 ● Reducer
 ● Cap
 ● Union
 c. Assemble a basic plumbing system, such as a greenhouse watering system or a sink assembly.

5. Explore the different agricultural mechanization enterprises in Mississippi. DOK 1, PST
Unit 9: Introduction to Agribusiness and Entrepreneurship

Competencies and Suggested Objectives

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 1. | Explore the concept of agribusiness and its role in the economy.
 | a. Explain agribusiness.
 | b. Define terms related to agribusiness:
 | ● Capital
 | ● Budget
 | ● Assets
 | ● Liabilities
 | ● Income
 | ● Expense
 | c. Describe how agribusiness influences the economy.
 | d. Describe how agribusiness principles fit into the agricultural industry as farmers input supplies into production agriculture, and the output is taken by agricultural services to get the product to the consumer (farm-to-table concept).
 | e. Identify local and statewide agribusinesses.
 | f. Explore opportunities and challenges of e-commerce. |
| 2. | Examine the principles of business organizations in agriculture.
 | a. Compare the characteristics of the most commonly used business organizations (e.g., proprietorships, partnerships, corporations, and cooperatives) in the agriculture and natural resources industry.
 | b. Identify resources needed in an agribusiness:
 | ● Location
 | ● Natural resources/production facility
 | ● Labor
 | ● Capital
 | ● Management resources
 | c. Discuss considerations in starting an agribusiness:
 | ● Management skills
 | ● Planning
 | ● Insurance
 | ● Taxes
 | d. Describe the characteristics of an entrepreneur.
 | e. Identify parts of a business plan.
 | f. Create a school-based cooperative business:
 | ● Description of the business
 | ● Time investment |
- Financial plan
Student Competency Profile

Student’s Name: ____________________________

This record is intended to serve as a method of noting student achievement of the competencies in each unit. It can be duplicated for each student, and it can serve as a cumulative record of competencies achieved in the course.

In the blank before each competency, place the date on which the student mastered the competency.

<table>
<thead>
<tr>
<th>Unit 1: Introduction to Agriculture and Environmental Science Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Examine the impact of the agriculture and natural resources industry on society.</td>
</tr>
<tr>
<td>2. Describe an application of science in agriculture and environmental science technology.</td>
</tr>
<tr>
<td>3. Apply standard agricultural and natural resources safety practices.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit 2: Agricultural Leadership and Career Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Explore the integral relationship between the FFA and agricultural education.</td>
</tr>
<tr>
<td>2. Explore the role of the FFA in promoting leadership, personal growth, and career success through 21st Century Skills Standards.</td>
</tr>
<tr>
<td>3. Describe the role of 21st Century Skills, work ethic, and values in establishing and building a successful career.</td>
</tr>
<tr>
<td>4. Investigate careers associated with the agricultural industry and write a report with details about the career.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit 3: Introduction to Experiential Learning (SAE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe the purposes and requirements of the supervised agricultural experience (SAE) program.</td>
</tr>
<tr>
<td>2. Develop a personal plan for the SAE program.</td>
</tr>
<tr>
<td>3. Develop a record-keeping system for an individual student’s SAE program.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit 4: Basic Soil Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe soil and discuss the importance it plays in agriculture production.</td>
</tr>
<tr>
<td>2. Identify and describe the physical composition of soil:</td>
</tr>
<tr>
<td>3. Identify and describe the physical properties of soil.</td>
</tr>
<tr>
<td>4. Demonstrate how to use the USDA Textural Triangle to classify soil texture.</td>
</tr>
<tr>
<td>5. List the factors that impact soil formation:</td>
</tr>
<tr>
<td>6. Describe a soil horizon and the horizons/layers of a typical soil profile:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit 5: Introduction to the Science of Agricultural Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Explore the physiology of plants.</td>
</tr>
<tr>
<td>2. Investigate plant anatomy.</td>
</tr>
</tbody>
</table>
3. Investigate common methods of plant reproduction.
4. Discuss classification methods for plants.
5. Classify the different plant production enterprises in Mississippi.

Unit 6: Introduction to the Science of Agricultural Animals
1. Explore common terminology associated with the agricultural animal industry.
2. Investigate the anatomy and physiology of animals.
3. Describe important elements of digestion and nutrition in animals.
4. Examine the role of genetics and breeding in animal production.
5. Explore the agricultural animal industry.

Unit 7: Introduction to the Science of Agricultural Environment
1. Explain the basic life needs that the environment provides.
2. Describe ecosystems and how they function within the environment.
3. Relate the importance of natural resources and their relationship to conservation and preservation.
4. Describe the importance of the outdoor recreation industry to natural resources management.
5. Describe forestry as a science and discuss basic forest-management concepts.
6. Explain the concept of stewardship and sustainability of our natural resources.
7. Explore resource conservation and alternative energy sources.

Unit 8: Introduction to the Science of Agricultural Mechanization
1. Identify commonly used agricultural mechanic tools and classify as a hand or power tool:
2. Identify and describe the use of mechanical equipment commonly found in agricultural mechanization:
3. Explore basic principles of electricity.
4. Explore basic principles of plumbing systems.
5. Explore the different agricultural mechanization enterprises in Mississippi.

Unit 9: Introduction to Agribusiness and Entrepreneurship
1. Explore the concept of agribusiness and its role in the economy.
2. Examine the principles of business organizations in agriculture.
Appendix A: Industry Standards

AGRICULTURE, FOOD AND NATURAL RESOURCES (AFNR) PATHWAY CONTENT STANDARDS AND PERFORMANCE ELEMENTS

<table>
<thead>
<tr>
<th></th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
<th>Unit 6</th>
<th>Unit 7</th>
<th>Unit 8</th>
<th>Unit 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFNR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS - AGRIBUSINESS SYSTEMS</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS - ANIMAL SYSTEMS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS - BIOTECHNOLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CRP - CAREER READY PRACTICES</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CS – AGRICULTURE, FOOD AND NATURAL RESOURCES CLUSTER SKILL</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES - ENVIRONMENTAL SERVICE SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRS - NATURAL RESOURCE SYSTEMS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS - PLANT SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PST - POWER, STRUCTURAL, AND TECHNICAL SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABS AGRIBUSINESS SYSTEMS
AS ANIMAL SYSTEMS
BS BIOTECHNOLOGY
CRP CAREER READY PRACTICES
CS AGRICULTURE, FOOD AND NATURAL RESOURCES CLUSTER SKILL
ES ENVIRONMENTAL SERVICE SYSTEMS
FPP FOOD PRODUCTS AND PROCESSING SYSTEMS
NRS NATURAL RESOURCE SYSTEMS
PS PLANT SYSTEMS
PST POWER, STRUCTURAL, AND TECHNICAL SYSTEMS

The AFNR Pathway Content Standards and Performance Elements are adapted from *National Agriculture, Food, and Natural Resources (AFNR) Career Cluster Content Standards*. Reprinted with permission from the National Council for Agricultural Education, 1410 King Street, Suite 400, Alexandria, VA 22314, 800.772.0939. Copyright © 2015 A complete copy of the National Standards can be downloaded from the FFA website at [wwwffa.org/thecouncil](http://www.ffa.org/thecouncil).
Agribusiness Systems Career Pathway Content Standards

The Agribusiness Systems (ABS) Career Pathway encompasses the study of agribusinesses and their management including, but not limited to, record keeping, budget management (cash and credit), and business planning, and sales and marketing. Students completing a program of study in this pathway will demonstrate competence in the application of principles and techniques for the planning, development, application and management of agribusiness systems in AFNR settings.

Within each pathway, the standards are organized as follows:

- **Common Career Technical Core (CCTC) Standards** – These are the standards for Agribusiness Systems (AG-ABS) from the 2012 version of the Common Career and Technical Core Standards, which are owned by the National Association of State Directors of Career and Technical Education/National Career Technical Education Foundation and are used here with permission. These statements define what students should know and be able to do after completing instruction in a program of study for this pathway.

- **Performance Indicators** – These statements distill each CCTC Standard into more discrete indicators of the knowledge and skills students should attain through a program of study in this pathway. Attainment of the knowledge and skills outlined in the performance indicators is intended to demonstrate an acceptable level of proficiency with the related CCTC Standard at the conclusion of a program of study in this area.

ABS.01. CCTC Standard: Apply management planning principles in AFNR businesses.

- **ABS.01.01. Performance Indicator:** Apply micro- and macroeconomic principles to plan and manage inputs and outputs in an AFNR business.

- **ABS.01.02. Performance Indicator:** Read, interpret, evaluate and write statements of purpose to guide business goals, objectives and resource allocation.

- **ABS.01.03. Performance Indicator:** Devise and apply management skills to organize and run an AFNR business in an efficient, legal and ethical manner.

- **ABS.01.04. Performance Indicator:** Evaluate, develop and implement procedures used to recruit, train and retain productive human resources for AFNR businesses.

ABS.02. CCTC Standard: Use record keeping to accomplish AFNR business objectives, manage budgets and comply with laws and regulations.

- **ABS.02.01. Performance Indicator:** Apply fundamental accounting principles, systems, tools and applicable laws and regulations to record, track and audit AFNR business transactions (e.g., accounts, debits, credits, assets, liabilities, equity, etc.).

- **ABS.02.02. Performance Indicator:** Assemble, interpret and analyze financial information and reports to monitor AFNR business performance and support decision-making (e.g., income statements, balance sheets, cash-flow analysis, inventory reports, break-even analysis, return on investment, taxes, etc.).

ABS.03. CCTC Standard: Manage cash budgets, credit budgets and credit for an AFNR business using generally accepted accounting principles.

- **ABS.03.01. Performance Indicator:** Develop, assess and manage cash budgets to achieve AFNR business goals.
ABS.03.02. Performance Indicator: Analyze credit needs and manage credit budgets to achieve AFNR business goals.

ABS.04. CCTC Standard: Develop a business plan for an AFNR business.
 ABS.04.01. Performance Indicator: Analyze characteristics and planning requirements associated with developing business plans for different types of AFNR businesses.
 ABS.04.02. Performance Indicator: Develop production and operational plans for an AFNR business.
 ABS.04.03. Performance Indicator: Identify and apply strategies to manage or mitigate risk.

ABS.05. CCTC Standard: Use sales and marketing principles to accomplish AFNR business objectives.
 ABS.05.01. Performance Indicator: Analyze the role of markets, trade, competition and price in relation to an AFNR business sales and marketing plans.
 ABS.05.02. Performance Indicator: Assess and apply sales principles and skills to accomplish AFNR business objectives.
 ABS.05.03. Performance Indicator: Assess marketing principles and develop marketing plans to accomplish AFNR business objectives.

Animal Systems Career Pathway Content Standards

The Animal Systems (AS) Career Pathway encompasses the study of animal systems, including content areas such as life processes, health, nutrition, genetics, and management and processing, as applied to small animals, aquaculture, exotic animals, livestock, dairy, horses and/or poultry. Students completing a program of study in this pathway will demonstrate competence in the application of principles and techniques for the development, application and management of animal systems in AFNR settings.

Within each pathway, the standards are organized as follows:

- **Common Career Technical Core (CCTC) Standards** – These are the standards for Animal Systems (AG-AS) from the 2012 version of the Common Career and Technical Core Standards, which are owned by the National Association of State Directors of Career and Technical Education/National Career Technical Education Foundation and are used here with permission. These statements define what students should know and be able to do after completing instruction in a program of study for this pathway.

- **Performance Indicators** – These statements distill each CCTC Standard into more discrete indicators of the knowledge and skills students should attain through a program of study in this pathway. Attainment of the knowledge and skills outlined in the performance indicators is intended to demonstrate an acceptable level of proficiency with the related CCTC Standard at the conclusion of a program of study in this area.

AS.01. CCTC Standard: Analyze historic and current trends impacting the animal systems industry.
 AS.01.01. Performance Indicator: Evaluate the development and implications of animal origin, domestication and distribution on production practices and the environment.
 AS.01.02. Performance Indicator: Assess and select animal production methods for use in animal systems based upon their effectiveness and impacts.
AS.01.03. **Performance Indicator:** Analyze and apply laws and sustainable practices to animal agriculture from a global perspective.

AS.02. CCTC Standard: Utilize best-practice protocols based upon animal behaviors for animal husbandry and welfare.
 - **AS.02.01. Performance Indicator:** Demonstrate management techniques that ensure animal welfare.
 - **AS.02.02. Performance Indicator:** Analyze procedures to ensure that animal products are safe for consumption (e.g., use in food system, etc.).

AS.03. CCTC Standard: Design and provide proper animal nutrition to achieve desired outcomes for performance, development, reproduction and/or economic production.
 - **AS.03.01. Performance Indicator:** Analyze the nutritional needs of animals.
 - **AS.03.02 Performance Indicator:** Analyze feed rations and assess if they meet the nutritional needs of animals.
 - **AS.03.03 Performance Indicator:** Utilize industry tools to make animal nutrition decisions.

AS.04. CCTC Standard: Apply principles of animal reproduction to achieve desired outcomes for performance, development and/or economic production.
 - **AS.04.01. Performance Indicator:** Evaluate animals for breeding readiness and soundness.
 - **AS.04.02. Performance Indicator:** Apply scientific principles to select and care for breeding animals.
 - **AS.04.03 Performance Indicator:** Apply scientific principles to breed animals.

AS.05. CCTC Standard: Evaluate environmental factors affecting animal performance and implement procedures for enhancing performance and animal health.
 - **AS.05.01. Performance Indicator:** Design animal housing, equipment and handling facilities for the major systems of animal production.
 - **AS.05.02. Performance Indicator:** Comply with government regulations and safety standards for facilities used in animal production.

AS.06. CCTC Standard: Classify, evaluate and select animals based on anatomical and physiological characteristics.
 - **AS.06.01. Performance Indicator:** Classify animals according to taxonomic classification systems and use (e.g., agricultural, companion, etc.).
 - **AS.06.02. Performance Indicator:** Apply principles of comparative anatomy and physiology to uses within various animal systems.
 - **AS.06.03. Performance Indicator:** Select and train animals for specific purposes and maximum performance based on anatomy and physiology.

AS.07. CCTC Standard: Apply principles of effective animal health care.
 - **AS.07.01. Performance Indicator:** Design programs to prevent animal diseases, parasites and other disorders and ensure animal welfare.
AS.07.02. **Performance Indicator:** Analyze biosecurity measures utilized to protect the welfare of animals on a local, state, national, and global level.

AS.08. CCTC Standard: Analyze environmental factors associated with animal production.
AS.08.01. Performance Indicator: Design and implement methods to reduce the effects of animal production on the environment.
AS.08.02. Performance Indicator: Evaluate the effects of environmental conditions on animals and create plans to ensure favorable environments for animals.

Common Career Technical Core Career Ready Practices Content Standards

The CCTC CRPs encompass fundamental skills and practices that all students should acquire to be career ready such as: responsibility, productivity, healthy choices, maintaining personal finances, communication, decision-making, creativity and innovation, critical-thinking, problem solving, integrity, ethical leadership, management, career planning, technology use and cultural/global competency. Students completing a program of study in any AFNR career pathway will demonstrate the knowledge, skills and behaviors that are important to career ready through experiences in a variety of settings (e.g., classroom, CTSO, work-based learning, community etc.).

DEFINITIONS: Within each pathway, the standards are organized as follows:
- **Common Career Technical Core (CCTC) Standards** – These are the standards for CRPs from the 2012 version of the Common Career and Technical Core Standards, which are owned by the National Association of State Directors of Career and Technical Education/National Career Technical Education Foundation and are used here with permission. These statements define what students should know and be able to do after completing instruction in a program of study for this pathway.
- **Performance Indicators** – These statements distill each CCTC Standard into more discrete indicators of the knowledge and skills students should attain through a program of study in this pathway. Attainment of the knowledge and skills outlined in the performance indicators is intended to demonstrate an acceptable level of proficiency with the related CCTC Standard at the conclusion of a CTE program of study.

CRP.01. CCTC Standard: Act as a responsible and contributing citizen and employee.
CRP.01.01. Performance Indicator: Model personal responsibility in the workplace and community.
CRP.01.02 Performance Indicator: Evaluate and consider the near-term and long-term impacts of personal and professional decisions on employers and community before taking action.
CRP.01.03. Performance Indicator: Identify and act upon opportunities for professional and civic service at work and in the community.

CRP.02. CCTC Standard: Apply appropriate academic and technical skills.
CRP.02.01. Performance Indicator: Use strategic thinking to connect and apply academic learning, knowledge and skills to solve problems in the workplace and community.
CRP.02.02. Performance Indicator: Use strategic thinking to connect and apply technical concepts to solve problems in the workplace and community.

CRP.03. CCTC Standard: Attend to personal health and financial well-being.
 CRP.03.01. Performance Indicator: Design and implement a personal wellness plan.
 CRP.03.02. Performance Indicator: Design and implement a personal financial management plan.

CRP.04. CCTC Standard: Communicate clearly, effectively and with reason.
 CRP.04.01. Performance Indicator: Speak using strategies that ensure clarity, logic, purpose and professionalism in formal and informal settings.
 CRP.04.02. Performance Indicator: Produce clear, reasoned and coherent written and visual communication in formal and informal settings.
 CRP.04.03. Performance Indicator: Model active listening strategies when interacting with others in formal and informal settings.

CRP.05. CCTC Standard: Consider the environmental, social and economic impacts of decisions.
 CRP.05.01. Performance Indicator: Assess, identify and synthesize the information and resources needed to make decisions that positively impact the workplace and community.
 CRP.05.02. Performance Indicator: Make, defend and evaluate decisions at work and in the community using information about the potential environmental, social and economic impacts.

CRP.06. CCTC Standard: Demonstrate creativity and innovation.
 CRP.06.01. Performance Indicator: Synthesize information, knowledge and experience to generate original ideas and challenge assumptions in the workplace and community.
 CRP.06.02. Performance Indicator: Assess a variety of workplace and community situations to identify ways to add value and improve the efficiency of processes and procedures.
 CRP.06.03. Performance Indicator: Create and execute a plan of action to act upon new ideas and introduce innovations to workplace and community organizations.

CRP.07. CCTC Standard: Employ valid and reliable research strategies.
 CRP.07.01. Performance Indicator: Select and implement reliable research processes and methods to generate data for decision-making in the workplace and community.
 CRP.07.02. Performance Indicator: Evaluate the validity of sources and data used when considering the adoption of new technologies, practices and ideas in the workplace and community.

CRP.08. CCTC Standard: Utilize critical thinking to make sense of problems and persevere in solving them.
 CRP.08.01. Performance Indicator: Apply reason and logic to evaluate workplace and community situations from multiple perspectives.
CRP.08.02. **Performance Indicator**: Investigate, prioritize and select solutions to solve problems in the workplace and community.

CRP.08.03. **Performance Indicator**: Establish plans to solve workplace and community problems and execute them with resiliency.

CRP.09. **CCTC Standard**: Model integrity, ethical leadership and effective management.

- **CRP.09.01. Performance Indicator**: Model characteristics of ethical and effective leaders in the workplace and community (e.g. integrity, self-awareness, self-regulation, etc.).
- **CRP.09.02. Performance Indicator**: Implement personal management skills to function effectively and efficiently in the workplace (e.g., time management, planning, prioritizing, etc.).
- **CRP.09.03. Performance Indicator**: Demonstrate behaviors that contribute to a positive morale and culture in the workplace and community (e.g., positively influencing others, effectively communicating, etc.).

CRP.10. **CCTC Standard**: Plan education and career path aligned to personal goals.

- **CRP.10.01. Performance Indicator**: Identify career opportunities within a career cluster that match personal interests, talents, goals and preferences.
- **CRP.10.02. Performance Indicator**: Examine career advancement requirements (e.g., education, certification, training, etc.) and create goals for continuous growth in a chosen career.
- **CRP.10.03. Performance Indicator**: Develop relationships with and assimilate input and/or advice from experts (e.g., counselors, mentors, etc.) to plan career and personal goals in a chosen career area.
- **CRP.10.04. Performance Indicator**: Identify, prepare, update and improve the tools and skills necessary to pursue a chosen career path.

CRP.11. **CCTC Standard**: Use technology to enhance productivity.

- **CRP.11.01. Performance Indicator**: Research, select and use new technologies, tools and applications to maximize productivity in the workplace and community.
- **CRP.11.02. Performance Indicator**: Evaluate personal and organizational risks of technology use and take actions to prevent or minimize risks in the workplace and community.

CRP.12. **CCTC Standard**: Work productively in teams while using cultural/global competence.

- **CRP.12.01. Performance Indicator**: Contribute to team-oriented projects and builds consensus to accomplish results using cultural global competence in the workplace and community.
- **CRP.12.02. Performance Indicator**: Create and implement strategies to engage team members to work toward team and organizational goals in a variety of workplace and community situations (e.g., meetings, presentations, etc.).
Agriculture, Food, and Natural Resources Cluster Skill Content Standards

The AFNR Cluster Skills (CS) encompasses the study of fundamental knowledge and skills related to all AFNR professions. Students completing a program of study in any AFNR career pathway will demonstrate fundamental knowledge of the nature, scope and relationships of AFNR systems and the skills necessary for analysis of current and historical issues and trends; application of technologies; safety, health and environmental practices; stewardship of natural resources; and exploration of career opportunities.

Within each pathway, the standards are organized as follows:

- **Common Career Technical Core (CCTC) Standards** – These are the standards for Agriculture, Food and Natural Resources Career Cluster® (AG) from the 2012 version of the Common Career and Technical Core Standards, which are owned by the National Association of State Directors of Career and Technical Education/National Career Technical Education Foundation and are used here with permission. These statements define what students should know and be able to do after completing instruction in a program of study for this pathway.

- **Performance Indicators** – These statements distill each CCTC Standard into more discrete indicators of the knowledge and skills students should attain through a program of study in this pathway. Attainment of the knowledge and skills outlined in the performance indicators is intended to demonstrate an acceptable level of proficiency with the related CCTC Standard at the conclusion of a program of study in this area.

CS.01. CCTC Standard: Analyze how issues, trends, technologies and public policies impact systems in the Agriculture, Food & Natural Resources Career Cluster.

- **CS.01.01. Performance Indicator:** Research, examine and discuss issues and trends that impact AFNR systems on local, state, national and global levels.
- **CS.01.02. Performance Indicator:** Examine technologies and analyze their impact on AFNR systems.
- **CS.01.03. Performance Indicator:** Identify public policies and examine their impact on AFNR systems.

CS.02. CCTC Standard: Evaluate the nature and scope of the Agriculture, Food & Natural Resources Career Cluster and the role of agriculture, food and natural resources (AFNR) in society and the economy.

- **CS.02.01. Performance Indicator:** Research and use geographic and economic data to solve problems in AFNR systems.
- **CS.02.02. Performance Indicator:** Examine the components of the AFNR systems and assess their impact on the local, state, national and global society and economy.

CS.03. CCTC Standard: Examine and summarize the importance of health, safety and environmental management systems in AFNR workplaces.

- **CS.03.01. Performance Indicator:** Identify and explain the implications of required regulations to maintain and improve safety, health and environmental management systems.
- **CS.03.02. Performance Indicator:** Develop and implement a plan to maintain and improve health, safety and environmental compliance and performance.
CS.03.03. **Performance Indicator:** Apply health and safety practices to AFNR workplaces.
CS.03.04. **Performance Indicator:** Use appropriate protective equipment and demonstrate safe and proper use of AFNR tools and equipment.

CS.04. CCTC Standard: Demonstrate stewardship of natural resources in AFNR activities.
- **CS.04.01. Performance Indicator:** Identify and implement practices to steward natural resources in different AFNR systems.
- **CS.04.02. Performance Indicator:** Assess and explain the natural resource related trends, technologies and policies that impact AFNR systems.

CS.05. CCTC Standard: Describe career opportunities and means to achieve those opportunities in each of the Agriculture, Food & Natural Resources career pathways.
- **CS.05.01. Performance Indicator:** Evaluate and implement the steps and requirements to pursue a career opportunity in each of the AFNR career pathways (e.g., goals, degrees, certifications, resumes, cover letter, portfolios, interviews, etc.).

CS.06. CCTC Standard: Analyze the interaction among AFNR systems in the production, processing and management of food, fiber and fuel and the sustainable use of natural resources.
- **CS.06.01. Performance Indicator:** Examine and explain foundational cycles and systems of AFNR.
- **CS.06.02. Performance Indicator:** Analyze and explain the connection and relationships between different AFNR systems on a national and global level.

Biotechnology Systems Career Pathway Content Standards

The Biotechnology Systems (BS) Career Pathway encompasses the study of using data and scientific techniques to solve problems concerning living organisms with an emphasis on applications to agriculture, food and natural resource systems. Students completing a program of study in this pathway will demonstrate competence in the application of principles and techniques for the development, application and management of biotechnology in the context of AFNR.

Within each pathway, the standards are organized as follows:

- **National Council for Agricultural Education (NCAE) Standard** – These are the standards set forth by the National Council for Agricultural Education for Biotechnology Systems. They define what students should know and be able to do after completing instruction in a program of study focused on applying biotechnology to AFNR systems.
- **Performance Indicators** – These statements distill each performance element into more discrete indicators of the knowledge and skills students should attain through a program of study in this pathway. Attainment of the knowledge and skills outlined in the performance indicators is intended to demonstrate an acceptable level of proficiency with the related performance element at the conclusion of a program of study in this area.
BS.01. NCAE Standard: Assess factors that have influenced the evolution of biotechnology in agriculture (e.g., historical events, societal trends, ethical and legal implications, etc.).

 BS.01.01. Performance Indicator: Investigate and explain the relationship between past, current and emerging applications of biotechnology in agriculture (e.g., major innovators, historical developments, potential applications of biotechnology, etc.).

 BS.01.02. Performance Indicator: Evaluate the scope and implications of regulatory agencies on applications of biotechnology in agriculture and protection of public interests (e.g., health, safety, environmental issues, etc.).

 BS.01.03. Performance Indicator: Analyze the relationship and implications of bioethics, laws and public perceptions on applications of biotechnology in agriculture (e.g., ethical, legal, social, cultural issues).

BS.02. NCAE Standard: Demonstrate proficiency by safely applying appropriate laboratory skills to complete tasks in a biotechnology research and development environment (e.g., standard operating procedures, record keeping, aseptic technique, equipment maintenance, etc.).

 BS.02.01. Performance Indicator: Read, document, evaluate and secure accurate laboratory records of experimental protocols, observations and results.

 BS.02.02. Performance Indicator: Implement standard operating procedures for the proper maintenance, use and sterilization of equipment in a laboratory.

 BS.02.03. Performance Indicator: Apply standard operating procedures for the safe handling of biological and chemical materials in a laboratory.

 BS.02.04. Performance Indicator: Safely manage and dispose of biological materials, chemicals and wastes according to standard operating procedures.

 BS.02.05. Performance Indicator: Examine and perform scientific procedures using microbes, DNA, RNA and proteins in a laboratory.

BS.03. NCAE Standard: Demonstrate the application of biotechnology to solve problems in Agriculture, Food and Natural Resources (AFNR) systems (e.g., bioengineering, food processing, waste management, horticulture, forestry, livestock, crops, etc.).

 BS.03.01. Performance Indicator: Apply biotechnology principles, techniques and processes to create transgenic species through genetic engineering.

 BS.03.02. Performance Indicator: Apply biotechnology principles, techniques and processes to enhance the production of food through the use of microorganisms and enzymes.

 BS.03.03. Performance Indicator: Apply biotechnology principles, techniques and processes to protect the environment and maximize use of natural resources (e.g., biomass, bioprospecting, industrial biotechnology, etc.).

 BS.03.04. Performance Indicator: Apply biotechnology principles, techniques and processes to enhance plant and animal care and production (e.g., selective breeding, pharmaceuticals, biodiversity, etc.).

 BS.03.05. Performance Indicator: Apply biotechnology principles, techniques and processes to produce biofuels (e.g., fermentation, transesterification, methanogenesis, etc.).
BS.03.06. Performance Indicator: Apply biotechnology principles, techniques and processes to improve waste management (e.g., genetically modified organisms, bioremediation, etc.).

Environmental Service Systems Career Pathway Content Standards

The Environmental Service Systems (ESS) Career Pathway encompasses the study of systems, instruments and technology used to monitor and minimize the impact of human activity on environmental systems. Students completing a program of study in this pathway will demonstrate competence in the application of principles and techniques for the development, application and management of environmental service systems in AFNR settings.

Within each pathway, the standards are organized as follows:

- **Common Career Technical Core (CCTC) Standards** – These are the standards for Environmental Service Systems (AG-ESS) from the 2012 version of the Common Career and Technical Core Standards, which are owned by the National Association of State Directors of Career and Technical Education/National Career Technical Education Foundation and are used here with permission. These statements define what students should know and be able to do after completing instruction in a program of study for this pathway.

- **Performance Indicators** – These statements distill each CCTC Standard into more discrete indicators of the knowledge and skills students should attain through a program of study in this pathway. Attainment of the knowledge and skills outlined in the performance indicators is intended to demonstrate an acceptable level of proficiency with the related CCTC Standard at the conclusion of a program of study in this area.

ESS.01. CCTC Standard: Use analytical procedures and instruments to manage environmental service systems.

- **ESS.01.01. Performance Indicator:** Analyze and interpret laboratory and field samples in environmental service systems.
- **ESS.01.02. Performance Indicator:** Properly utilize scientific instruments in environmental monitoring situations (e.g., laboratory equipment, environmental monitoring instruments, etc.).

ESS.02. CCTC Standard: Evaluate the impact of public policies and regulations on environmental service system operations.

- **ESS.02.01. Performance Indicator:** Interpret and evaluate the impact of laws, agencies, policies and practices affecting environmental service systems.
- **ESS.02.02. Performance Indicator:** Compare and contrast the impact of current trends on regulation of environmental service systems (e.g., climate change, population growth, international trade, etc.).
- **ESS.02.03. Performance Indicator:** Examine and summarize the impact of public perceptions and social movements on the regulation of environmental service systems.

ESS.03. CCTC Standard: Develop proposed solutions to environmental issues, problems and applications using scientific principles of meteorology, soil science, hydrology, microbiology, chemistry and ecology.
ESS.03.01. Performance Indicator: Apply meteorology principles to environmental service systems.

ESS.03.02. Performance Indicator: Apply soil science and hydrology principles to environmental service systems.

ESS.03.03. Performance Indicator: Apply chemistry principles to environmental service systems.

ESS.03.04. Performance Indicator: Apply microbiology principles to environmental service systems.

ESS.03.05. Performance Indicator: Apply ecology principles to environmental service systems.

ESS.04. CCTC Standard: Demonstrate the operation of environmental service systems (e.g., pollution control, water treatment, wastewater treatment, solid waste management and energy conservation).

ESS.04.01. Performance Indicator: Use pollution control measures to maintain a safe facility and environment.

ESS.04.02. Performance Indicator: Manage safe disposal of all categories of solid waste in environmental service systems.

ESS.04.03. Performance Indicator: Apply techniques to ensure a safe supply of drinking water and adequate treatment of wastewater according to applicable rules and regulations.

ESS.04.04. Performance Indicator: Compare and contrast the impact of conventional and alternative energy sources on the environment and operation of environmental service systems.

ESS.05. CCTC Standard: Use tools, equipment, machinery and technology common to tasks in environmental service systems.

ESS.05.01. Performance Indicator: Use technological and mathematical tools to map land, facilities and infrastructure for environmental service systems.

ESS.05.02. Performance Indicator: Perform assessments of environmental conditions using equipment, machinery and technology.

Food Products and Processing Systems Career Pathway Content Standards

The Food Products and Processing Systems (FPP) Career Pathway encompasses the study of food safety and sanitation; nutrition, biology, microbiology, chemistry and human behavior in local and global food systems; food selection and processing for storage, distribution and consumption; and the historical and current development of the food industry. Students completing a program of study in this pathway will demonstrate competence in the application of principles and techniques for the development, application and management of food products and processing systems in AFNR settings.

Within each pathway, the standards are organized as follows:

- **Common Career Technical Core (CCTC) Standards** – These are the standards for Food Products and Processing Systems (AG-FPP) from the 2012 version of the Common Career and Technical Core Standards, which are owned by the National Association of State Directors of Career and Technical Education/National Career Technical Education Foundation and are used here with permission. These
statements define what students should know and be able to do after completing instruction in a program of study for this pathway.

- **Performance Indicators** – These statements distill each CCTC Standard into more discrete indicators of the knowledge and skills students should attain through a program of study in this pathway. Attainment of the knowledge and skills outlined in the performance indicators is intended to demonstrate an acceptable level of proficiency with the related CCTC Standard at the conclusion of a program of study in this area.

FPP.01. CCTC Standard: Develop and implement procedures to ensure safety, sanitation and quality in food product and processing facilities.

- **FPP.01.01. Performance Indicator:** Analyze and manage operational and safety procedures in food products and processing facilities.
- **FPP.01.02. Performance Indicator:** Apply food safety and sanitation procedures in the handling and processing of food products to ensure food quality.
- **FPP.01.03. Performance Indicator:** Apply food safety procedures when storing food products to ensure food quality.

FPP.02. CCTC Standard: Apply principles of nutrition, biology, microbiology, chemistry and human behavior to the development of food products.

- **FPP.02.01. Performance Indicator:** Apply principles of nutrition and biology to develop food products that provide a safe, wholesome and nutritious food supply for local and global food systems.
- **FPP.02.02. Performance Indicator:** Apply principles of microbiology and chemistry to develop food products to provide a safe, wholesome and nutritious food supply for local and global food systems.
- **FPP.02.03. Performance Indicator:** Apply principles of human behavior to develop food products to provide a safe, wholesome and nutritious food supply for local and global food systems.

FPP.03. CCTC Standard: Select and process food products for storage, distribution and consumption.

- **FPP.03.01. Performance Indicator:** Implement selection, evaluation and inspection techniques to ensure safe and quality food products.
- **FPP.03.02. Performance Indicator:** Design and apply techniques of food processing, preservation, packaging and presentation for distribution and consumption of food products.
- **FPP.03.03. Performance Indicator:** Create food distribution plans and procedures to ensure safe delivery of food products.

FPP.04. CCTC Standard: Explain the scope of the food industry and the historical and current developments of food product and processing.

- **FPP.04.01. Performance Indicator:** Examine the scope of the food industry by evaluating local and global policies, trends and customs for food production.
- **FPP.04.02. Performance Indicator:** Evaluate the significance and implications of changes and trends in the food products and processing industry in the local and global food systems.
FPP.04.03. Performance Indicator: Identify and explain the purpose of industry organizations, groups and regulatory agencies that influence the local and global food systems.

Natural Resource Systems Career Pathway Content Standards

The Natural Resource Systems (NRS) Career Pathway encompasses the study of the management, protection, enhancement and improvement of soil, water, wildlife, forests and air as natural resources. Students completing a program of study in this pathway will demonstrate competence in the application of principles and techniques for the development, application and management of natural resource systems in AFNR settings.

Within each pathway, the standards are organized as follows:

- **Common Career Technical Core (CCTC) Standards** – These are the standards for Natural Resource Systems (AG-NRS) from the 2012 version of the Common Career and Technical Core Standards, which are owned by the National Association of State Directors of Career and Technical Education/National Career Technical Education Foundation and are used here with permission. These statements define what students should know and be able to do after completing instruction in a program of study for this pathway.

- **Performance Indicators** – These statements distill each CCTC Standard into more discrete indicators of the knowledge and skills students should attain through a program of study in this pathway. Attainment of the knowledge and skills outlined in the performance indicators is intended to demonstrate an acceptable level of proficiency with the related CCTC Standard at the conclusion of a program of study in this area.

NRS.01. CCTC Standard: Plan and conduct natural resource management activities that apply logical, reasoned and scientifically based solutions to natural resource issues and goals.

- **NRS.01.01. Performance Indicator:** Apply methods of classification to examine natural resource availability and ecosystem function in a particular region.

- **NRS.01.02. Performance Indicator:** Classify different types of natural resources in order to enable protection, conservation, enhancement and management in a particular geographical region.

- **NRS.01.03. Performance Indicator:** Apply ecological concepts and principles to atmospheric natural resource systems.

- **NRS.01.04. Performance Indicator:** Apply ecological concepts and principles to aquatic natural resource systems.

- **NRS.01.05. Performance Indicator:** Apply ecological concepts and principles to terrestrial natural resource systems.

- **NRS.01.06. Performance Indicator:** Apply ecological concepts and principles to living organisms in natural resource systems.

NRS.02. CCTC Standard: Analyze the interrelationships between natural resources and humans.

- **NRS.02.01. Performance Indicator:** Examine and interpret the purpose, enforcement, impact and effectiveness of laws and agencies related to natural resource management, protection, enhancement and improvement (e.g., water regulations, game laws, historic preservation laws, environmental policy, etc.).
NRS.02.02. Performance Indicator: Assess the impact of human activities on the availability of natural resources.

NRS.02.03. Performance Indicator: Analyze how modern perceptions of natural resource management, protection, enhancement and improvement change and develop over time.

NRS.02.04. Performance Indicator: Examine and explain how economics affects the use of natural resources.

NRS.02.05. Performance Indicator: Communicate information to the public regarding topics related to the management, protection, enhancement, and improvement of natural resources.

NRS.03. CCTC Standard: Develop plans to ensure sustainable production and processing of natural resources.

NRS.03.01. Performance Indicator: Sustainably produce, harvest, process and use natural resource products (e.g., forest products, wildlife, minerals, fossil fuels, shale oil, alternative energy, recreation, aquatic species, etc.).

NRS.03.02. Performance Indicator: Demonstrate cartographic skills, tools and technologies to aid in developing, implementing and evaluating natural resource management plans.

NRS.04. CCTC Standard: Demonstrate responsible management procedures and techniques to protect, maintain, enhance, and improve natural resources.

NRS.04.01. Performance Indicator: Demonstrate natural resource protection, maintenance, enhancement and improvement techniques.

NRS.04.02. Performance Indicator: Diagnose plant and wildlife diseases and follow protocols to prevent their spread.

NRS.04.03. Performance Indicator: Prevent or manage introduction of ecologically harmful species in a particular region.

NRS.04.04. Performance Indicator: Manage fires in natural resource systems.

Plant Science Systems Career Pathway Content Standards

The Plant Systems (PS) Career Pathway encompasses the study of plant life cycles, classifications, functions, structures, reproduction, media and nutrients, as well as growth and cultural practices through the study of crops, turf grass, trees, shrubs and/or ornamental plants. Students completing a program of study in this pathway will demonstrate competence in the application of principles and techniques for the development, application and management of plant systems in AFNR settings.

Within each pathway, the standards are organized as follows:

- **Common Career Technical Core (CCTC) Standards** – These are the standards for Plant Systems (AG-PS) from the 2012 version of the Common Career and Technical Core Standards, which are owned by the National Association of State Directors of Career and Technical Education/National Career Technical Education Foundation and are used here with permission. These statements define what students should know and be able to do after completing instruction in a program of study for this pathway.
• **Performance Indicators** – These statements distill each CCTC Standard into more discrete indicators of the knowledge and skills students should attain through a program of study in this pathway. Attainment of the knowledge and skills outlined in the performance indicators is intended to demonstrate an acceptable level of proficiency with the related CCTC Standard at the conclusion of a program of study in this area.

PS.01. CCTC Standard: Develop and implement a crop management plan for a given production goal that accounts for environmental factors.

- **PS.01.01. Performance Indicator**: Determine the influence of environmental factors on plant growth.
- **PS.01.02. Performance Indicator**: Prepare and manage growing media for use in plant systems.
- **PS.01.03. Performance Indicator**: Develop and implement a fertilization plan for specific plants or crops.

PS.02. CCTC Standard: Apply principles of classification, plant anatomy, and plant physiology to plant production and management.

- **PS.02.01. Performance Indicator**: Classify plants according to taxonomic systems.
- **PS.02.02. Performance Indicator**: Apply knowledge of plant anatomy and the functions of plant structures to activities associated with plant systems.
- **PS.02.03. Performance Indicator**: Apply knowledge of plant physiology and energy conversion to plant systems.

PS.03. CCTC Standard: Propagate, culture and harvest plants and plant products based on current industry standards.

- **PS.03.01. Performance Indicator**: Demonstrate plant propagation techniques in plant system activities.
- **PS.03.02. Performance Indicator**: Develop and implement a management plan for plant production.
- **PS.03.03. Performance Indicator**: Develop and implement a plan for integrated pest management for plant production.
- **PS.03.04. Performance Indicator**: Apply principles and practices of sustainable agriculture to plant production.
- **PS.03.05. Performance Indicator**: Harvest, handle and store crops according to current industry standards.

PS.04. CCTC Standard: Apply principles of design in plant systems to enhance an environment (e.g. floral, forest landscape, and farm).

- **PS.04.01. Performance Indicator**: Evaluating, identifying and preparing plants to enhance an environment.
- **PS.04.02. Performance Indicator**: Create designs using plants.
Power, Structural and Technical Systems Career Pathway Content Standards

The Power, Structural and Technical Systems (PST) Career Pathway encompasses the study of agricultural equipment, power systems, alternative fuel sources and precision technology, as well as woodworking, metalworking, welding and project planning for agricultural structures. Students completing a program of study in this pathway will demonstrate competence in the application of principles and techniques for the development, application and management of power, structural and technical systems in AFNR settings.

Within each pathway, the standards are organized as follows:

- **Common Career Technical Core (CCTC) Standards** – These are the standards for Power, Structural and Technical Systems (AG-PST) from the 2012 version of the Common Career and Technical Core Standards, which are owned by the National Association of State Directors of Career and Technical Education/National Career Technical Education Foundation and are used here with permission. These statements define what students should know and be able to do after completing instruction in a program of study for this pathway.

- **Performance Indicators** – These statements distill each CCTC Standard into more discrete indicators of the knowledge and skills students should attain through a program of study in this pathway. Attainment of the knowledge and skills outlined in the performance indicators is intended to demonstrate an acceptable level of proficiency with the related CCTC Standard at the conclusion of a program of study in this area.

PST.01. CCTC Standard: Apply physical science principles and engineering applications to solve problems and improve performance in AFNR power, structural and technical systems.

- **PST.01.01. Performance Indicator:** Apply physical science and engineering principles to assess and select energy sources for AFNR power, structural and technical systems.
- **PST.01.02. Performance Indicator:** Apply physical science and engineering principles to design, implement and improve safe and efficient mechanical systems in AFNR situations.
- **PST.01.03. Performance Indicator:** Apply physical science principles to metal fabrication using a variety of welding and cutting processes (e.g., SMAW, GMAW, GTAW, fuel-oxygen and plasma arc torch, etc.).

PST.02. CCTC Standard: Operate and maintain AFNR mechanical equipment and power systems.

- **PST.02.01. Performance Indicator:** Perform preventative maintenance and scheduled service to maintain equipment, machinery and power units used in AFNR settings.
- **PST.02.02. Performance Indicator:** Operate machinery and equipment while observing all safety precautions in AFNR settings.

PST.03. CCTC Standard: Service and repair AFNR mechanical equipment and power systems.

- **PST.03.01. Performance Indicator:** Troubleshoot, service and repair components of internal combustion engines using manufacturers’ guidelines.
- **PST.03.02. Performance Indicator:** Service electrical systems and components of mechanical equipment and power systems using a variety of troubleshooting and/or diagnostic methods.
PST.03.03. Performance Indicator: Utilize manufacturers’ guidelines to diagnose and troubleshoot malfunctions in machinery, equipment and power source systems (e.g., hydraulic, pneumatic, transmission, steering, suspension, etc.).

PST.04. CCTC Standard: Plan, build and maintain AFNR structures.

PST.04.01. Performance Indicator: Create sketches and plans for AFNR structures.

PST.04.02. Performance Indicator: Determine structural requirements, specifications and estimate costs for AFNR structures.

PST.04.03. Performance Indicator: Follow architectural and mechanical plans to construct, maintain and/or repair AFNR structures (e.g., material selection, site preparation and/or layout, plumbing, concrete/masonry, etc.).

PST.04.04. Performance Indicator: Apply electrical wiring principles in AFNR structures.

PST.05. CCTC Standard: Use control, monitoring, geospatial and other technologies in AFNR power, structural and technical systems.

PST.05.01. Performance Indicator: Apply computer and other technologies (e.g., robotics, CNC, UAS, etc.) to solve problems and increase the efficiency of AFNR systems.

PST.05.02. Performance Indicator: Prepare and/or use electrical drawings to design, install and troubleshoot electronic control systems in AFNR settings.

PST.05.03. Performance Indicator: Apply geospatial technologies to solve problems and increase the efficiency of AFNR systems.
Appendix B: 21st Century Skills

<table>
<thead>
<tr>
<th>21st Century Crosswalk for Concepts of Agriscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>21st Century Standards</td>
</tr>
<tr>
<td>CS1</td>
</tr>
<tr>
<td>CS2</td>
</tr>
<tr>
<td>CS3</td>
</tr>
<tr>
<td>CS5</td>
</tr>
<tr>
<td>CS6</td>
</tr>
<tr>
<td>CS7</td>
</tr>
<tr>
<td>CS8</td>
</tr>
<tr>
<td>CS9</td>
</tr>
<tr>
<td>CS10</td>
</tr>
<tr>
<td>CS11</td>
</tr>
<tr>
<td>CS12</td>
</tr>
<tr>
<td>CS13</td>
</tr>
<tr>
<td>CS14</td>
</tr>
<tr>
<td>CS15</td>
</tr>
<tr>
<td>CS16</td>
</tr>
</tbody>
</table>

CSS1-21st Century Themes

CS1 Global Awareness
1. Using 21st century skills to understand and address global issues
2. Learning from and working collaboratively with individuals representing diverse cultures, religions, and lifestyles in a spirit of mutual respect and open dialogue in personal, work, and community contexts
3. Understanding other nations and cultures, including the use of non-English languages

CS2 Financial, Economic, Business, and Entrepreneurial Literacy
1. Knowing how to make appropriate personal economic choices
2. Understanding the role of the economy in society
3. Using entrepreneurial skills to enhance workplace productivity and career options

CS3 Civic Literacy
1. Participating effectively in civic life through knowing how to stay informed and understanding governmental processes
2. Exercising the rights and obligations of citizenship at local, state, national, and global levels
3. Understanding the local and global implications of civic decisions

CS4 Health Literacy
1. Obtaining, interpreting, and understanding basic health information and services and using such information and services in ways that enhance health
2. Understanding preventive physical and mental health measures, including proper diet, nutrition, exercise, risk avoidance, and stress reduction
3. Using available information to make appropriate health-related decisions
4. Establishing and monitoring personal and family health goals

5. Understanding national and international public health and safety issues

CS5 Environmental Literacy

1. Demonstrate knowledge and understanding of the environment and the circumstances and conditions affecting it, particularly as relates to air, climate, land, food, energy, water, and ecosystems.
2. Demonstrate knowledge and understanding of society’s impact on the natural world (e.g., population growth, population development, resource consumption rate, etc.).
3. Investigate and analyze environmental issues, and make accurate conclusions about effective solutions.
4. Take individual and collective action toward addressing environmental challenges (e.g., participating in global actions, designing solutions that inspire action on environmental issues).

CSS2-Learning and Innovation Skills

CS6 Creativity and Innovation

1. Think Creatively
2. Work Creatively with Others
3. Implement Innovations

CS7 Critical Thinking and Problem Solving

1. Reason Effectively
2. Use Systems Thinking
3. Make Judgments and Decisions
4. Solve Problems

CS8 Communication and Collaboration

1. Communicate Clearly
2. Collaborate with Others

CSS3-Information, Media and Technology Skills

CS9 Information Literacy

1. Access and Evaluate Information
2. Use and Manage Information

CS10 Media Literacy

1. Analyze Media
2. Create Media Products

CS11 ICT Literacy

1. Apply Technology Effectively

CSS4-Life and Career Skills

CS12 Flexibility and Adaptability

1. Adapt to change
2. Be Flexible

CS13 Initiative and Self-Direction

1. Manage Goals and Time
2. Work Independently
3. Be Self-directed Learners
CS14 Social and Cross-Cultural Skills
 1. Interact Effectively with others
 2. Work Effectively in Diverse Teams

CS15 Productivity and Accountability
 1. Manage Projects
 2. Produce Results

CS16 Leadership and Responsibility
 1. Guide and Lead Others
 2. Be Responsible to Others
Appendix C: College and Career Ready Standards

English Standards

<table>
<thead>
<tr>
<th>Units</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
<th>Unit 6</th>
<th>Unit 7</th>
<th>Unit 8</th>
<th>Unit 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.9.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>W.9.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W.9.3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W.9.4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W.9.5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W.9.6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W.9.7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W.9.8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W.9.9</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W.9.10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL.9.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL.9.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL.9.3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL.9.4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL.9.5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL.9.6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.9.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.9.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.9.3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.9.4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.9.5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.9.6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RH.9-10.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RH.9-10.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RH.9-10.3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RH.9-10.4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RH.9-10.5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RH.9-10.6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RH.9-10.7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RH.9-10.8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RH.9-10.9</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RH.9-10.10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RST.9-10.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RST.9-10.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RST.9-10.3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RST.9-10.4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RST.9-10.5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RST.9-10.6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RST.9-10.7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RST.9-10.8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RST.9-10.9</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RST.9-10.10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
College and Career Ready English I

Writing Text Types and Purposes
W.9.1 Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence.
 W.9.1a Introduce precise claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that establishes clear relationships among claim(s), counterclaims, reasons, and evidence.
 W.9.1b Develop claim(s) and counterclaims fairly, supplying evidence for each while pointing out the strengths and limitations of both in a manner that anticipates the audience’s knowledge level and concerns.
 W.9.1c Use words, phrases, and clauses to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
 W.9.1d Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
 W.9.1e Provide a concluding statement or section that follows from and supports the argument presented.
W.9.2 Write informative/explanatory texts to examine and convey complex ideas, concepts, and information clearly and accurately through the effective selection, organization, and analysis of content.
 W.9.2a Introduce a topic; organize complex ideas, concepts, and information to make important connections and distinctions; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension.
 W.9.2b Develop the topic with well-chosen, relevant, and sufficient facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience’s knowledge of the topic.
 W.9.2c Use appropriate and varied transitions to link the major sections of the text, create cohesion, and clarify the relationships among complex ideas and concepts.
 W.9.2d Use precise language and domain-specific vocabulary to manage the complexity of the topic.
 W.9.2e Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
 W.9.2f Provide a concluding statement or section that follows from and supports the information or explanation presented (e.g., articulating implications or the significance of the topic).
W.9.3 Write narratives to develop real or imagined experiences or events using effective technique, well-chosen details, and well-structured event sequences.
 W.9.3a Engage and orient the reader by setting out a problem, situation, or observation, establishing one or multiple point(s) of view, and introducing a narrator and/or characters; create a smooth progression of experiences or events.
 W.9.3b Use narrative techniques, such as dialogue, pacing, description, reflection, and multiple plot lines, to develop experiences, events, and/or characters.
 W.9.3c Use a variety of techniques to sequence events so that they build on one another to create a coherent whole.
 W.9.3d Use precise words and phrases, telling details, and sensory language to convey a vivid picture of the experiences, events, setting, and/or characters.
 W.9.3e Provide a conclusion that follows from and reflects on what is experienced, observed, or resolved over the course of the narrative.

Production and Distribution of Writing
W.9.4 Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. (Grade-specific expectations for writing types are defined in standards 1–3 above.)
W.9.5 Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. (Editing for conventions should demonstrate command of Language standards 1–3 up to and including grades 9–10.)
W.9.6 Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology’s capacity to link to other information and to display information flexibly and dynamically.
Research to Build and Present Knowledge

W.9.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

College and Career Ready English I

W.9.8 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the usefulness of each source in answering the research question; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and following a standard format for citation.

W.9.9 Draw evidence from literary or informational texts to support analysis, reflection, and research.

W.9.9a Apply grades 9–10 Reading standards to literature (e.g., “Analyze how an author draws on and transforms source material in a specific work [e.g., how Shakespeare treats a theme or topic from Ovid or the Bible or how a later author draws on a play by Shakespeare?”).

W.9.9b Apply grades 9–10 Reading standards to literary nonfiction (e.g., “Delineate and evaluate the argument and specific claims in a text, assessing whether the reasoning is valid and the evidence is relevant and sufficient; identify false statements and fallacious reasoning”).

Range of Writing

W.9.10 Write routinely over extended time frames (time for research, reflection, and revision) and shorter time frames (a single sitting or a day or two) for a range of tasks, purposes, and audience.

College and Career Ready English I

SL.9.1 Initiate and participate effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grades 9–10 topics, texts, and issues, building on others’ ideas and expressing their own clearly and persuasively.

SL.9.1a Come to discussions prepared, having read and researched material under study; explicitly draw on that preparation by referring to evidence from texts and other research on the topic or issue to stimulate a thoughtful, well-reasoned exchange of ideas.

SL.9.1b Work with peers to set rules for collegial discussions and decision making (e.g., informal consensus, taking votes on key issues, and presentation of alternate views), clear goals and deadlines, and individual roles as needed.

SL.9.1c Propel conversations by posing and responding to questions that relate the current discussion to broader themes or larger ideas; actively incorporate others into the discussion; and clarify, verify, or challenge ideas and conclusions.

SL.9.1d Respond thoughtfully to diverse perspectives, summarize points of agreement and disagreement, and, when warranted, qualify or justify their own views and understanding and make new connections in light of the evidence and reasoning presented.

SL.9.2 Integrate multiple sources of information presented in diverse media or formats (e.g., visually, quantitatively, orally) evaluating the credibility and accuracy of each source.

SL.9.3 Evaluate a speaker’s point of view, reasoning, and use of evidence and rhetoric, identifying any fallacious reasoning or exaggerated or distorted evidence.

Presentation of Knowledge and Ideas

SL.9.4 Present information, findings, and supporting evidence clearly, concisely, and logically such that listeners can follow the line of reasoning and the organization, development, substance, and style are appropriate to purpose, audience, and task.

College and Career Ready English I

SL.9.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

SL.9.6 Adapt speech to a variety of contexts and tasks, demonstrating command of formal English when indicated or appropriate. (See grades 9–10 Language standards 1 and 3 for specific expectations.)
College and Career Ready English I

Language

Conventions of Standard English

L.9.1 Demonstrate command of the conventions of standard English grammar and usage when writing or speaking.
 L.9.1a Use parallel structure.*
 L.9.1b Use various types of phrases (noun, verb, adjectival, adverbial, participial, prepositional, absolute) and clauses (independent, dependent; noun, relative, adverbial) to convey specific meanings and add variety and interest to writing or presentations.
L.9.2 Demonstrate command of the conventions of standard English capitalization, punctuation, and spelling when writing.
 L.9.2a Use a semicolon (and perhaps a conjunctive adverb) to link two or more closely related independent clauses.
 L.9.2b Use a colon to introduce a list or quotation.
 L.9.2c Spell correctly

Knowledge of Language

L.9.3 Apply knowledge of language to understand how language functions in different contexts, to make effective choices for meaning or style, and to comprehend more fully when reading or listening
 L.9.3a Write and edit work so that it conforms to the guidelines in a style manual (e.g., MLA Handbook, Turabian’s Manual for Writers) appropriate for the discipline and writing type.

Vocabulary Acquisition and Use

L.9.4 Determine or clarify the meaning of unknown and multiple-meaning words and phrases based on grades 9–10 reading and content, choosing flexibly from a range of strategies.
 L.9.4a Use context (e.g., the overall meaning of a sentence, paragraph, or text; a word’s position or function in a sentence) as a clue to the meaning of a word or phrase.
 L.9.4b Identify and correctly use patterns of word changes that indicate different meanings or parts of speech (e.g., analyze, analysis, analytical; advocate, advocacy).
 L.9.4c Consult general and specialized reference materials (e.g., dictionaries, glossaries, thesauruses), both print and digital, to find the pronunciation of a word or determine or clarify its precise meaning, its part of speech, or its etymology.
 L.9.4d Verify the preliminary determination of the meaning of a word or phrase (e.g., by checking the inferred meaning in context or in a dictionary).
L.9.5 Demonstrate understanding of figurative language, word relationships, and nuances in word meanings.
 L.9.5a Interpret figures of speech (e.g., euphemism, oxymoron) in context and analyze their role in the text.
 L.9.5b Analyze nuances in the meaning of words with similar denotations.
L.9.6 Acquire and use accurately general academic and domain-specific words and phrases, sufficient for reading, writing, speaking, and listening at the college and career readiness level; demonstrate independence in gathering vocabulary knowledge when considering a word or phrase important to comprehension or expression.

College and Career Ready English II

Grades 9-10: Literacy in History/SS

Reading in History/Social Studies Key Ideas and Details

RH.9-10.1 Cite specific textual evidence to support analysis of primary and secondary sources, attending to such features as the date and origin of the information.
 RH.9-10.2 Determine the central ideas or information of a primary or secondary source; provide an accurate summary of how key events or ideas develop over the course of the text.
 RH.9-10.3 Analyze in detail a series of events described in a text; determine whether earlier events caused later ones or simply preceded them.
Craft and Structure

RH.9-10.4 Determine the meaning of words and phrases as they are used in a text, including vocabulary describing political, social, or economic aspects of history/social science.
RH.9-10.5 Analyze how a text uses structure to emphasize key points or advance an explanation or analysis.
RH.9-10.6 Compare the point of view of two or more authors for how they treat the same or similar topics, including which details they include and emphasize in their respective accounts.

Integration of Knowledge and Ideas

RH.9-10.7 Integrate quantitative or technical analysis (e.g., charts, research data) with qualitative analysis in print or digital text.
RH.9-10.8 Assess the extent to which the reasoning and evidence in a text support the author's claims.
RH.9-10.9 Compare and contrast treatments of the same topic in several primary and secondary sources.

Grades 9-10: Literacy in Science and Technical Subjects

Reading in Science and Technical Subjects Key Ideas and Details

RST.9-10.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions.
RST.9-10.2 Determine the central ideas or conclusions of a text; trace the text’s explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
RST.9-10.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.

Craft and Structure

RST.9-10.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9–10 texts and topics.
RST.9-10.5 Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
RST.9-10.6 Analyze the author’s purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, defining the question the author seeks to address.

Integration of Knowledge and Ideas

RST.9-10.7 Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
RST.9-10.8 Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem.
RST.9-10.9 Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.

Range of Reading and Level of Text Complexity

RST.9-10.10 By the end of grade 10, read and comprehend science/technical texts in the grades 9–10 text complexity band independently and proficiently.

Grades 9-10: Writing in History/SS, Science, and Technical Subjects

Writing Text Types and Purposes

WHST.9-10.1 Write arguments focused on discipline-specific content.
WHST.9-10.1a Introduce precise claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that establishes clear relationships among the claim(s), counterclaims, reasons, and evidence.
WHST.9-10.1b Develop claim(s) and counterclaims fairly, supplying data and evidence for each while pointing out the strengths and limitations of both claim(s) and counterclaims in a discipline-appropriate form and in a manner that anticipates the audience’s knowledge level and concerns.
WHST.9-10.1c Use words, phrases, and clauses to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
WHST.9-10.1d Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
WHST.9-10.1e Provide a concluding statement or section that follows from or supports the argument presented.
WHST.9-10.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
WHST.9-10.2a Introduce a topic and organize ideas, concepts, and information to make important connections and distinctions; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension.
WHST.9-10.2b Develop the topic with well-chosen, relevant, and sufficient facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience’s knowledge of the topic.

Grades 9-10
Writing in History/SS, Science, and Technical Subjects
WHST.9-10.2c Use varied transitions and sentence structures to link the major sections of the text, create cohesion, and clarify the relationships among ideas and concepts.
WHST.9-10.2d Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
WHST.9-10.2e Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
WHST.9-10.2f Provide a concluding statement or section that follows from and supports the information or explanation presented (e.g., articulating implications or the significance of the topic).
WHST.9-10.3 Not Applicable

Production and Distribution of Writing
WHST.9-10.4 Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
WHST.9-10.5 Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.
WHST.9-10.6 Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology’s capacity to link to other information and to display information flexibly and dynamically.

Research to Build and Present Knowledge
WHST.9-10.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

WHST.9-10.8 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the usefulness of each source in answering the research question; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and following a standard format for citation.
WHST.9-10.9 Draw evidence from informational texts to support analysis, reflection, and research.

Grades 9-10
Writing in History/SS, Science, and Technical Subjects
Range of Writing
WHST.9-10.10 Write routinely over extended time frames (time for reflection and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific tasks, purposes, and audiences.
Mathematics Standards

<table>
<thead>
<tr>
<th></th>
<th>Units</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
<th>Unit 6</th>
<th>Unit 7</th>
<th>Unit 8</th>
<th>Unit 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Q.1</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Q.2</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Q.3</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-MG.1</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-MG.2</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-MG.3</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-IC.3</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-IC.4</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-IC.5</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-IC.6</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number and Quantity

Reason quantitatively and use units to solve problems
- N-Q.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.*
- N-Q.2 Define appropriate quantities for the purpose of descriptive modeling.*
- N-Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.*

Apply geometric concepts in modeling situations
- G-MG.1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).*
- G-MG.2 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).*
- G-MG.3 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*

Make inferences and justify conclusions from sample surveys, experiments, and observational studies
- S-IC.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.*
- S-IC.4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.*
- S-IC.5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.*
- S-IC.6 Evaluate reports based on data.*
Appendix D: International Society for Technology in Education Standards (ISTE)

<table>
<thead>
<tr>
<th>ISTE Standards</th>
<th>Course</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
<th>Unit 6</th>
<th>Unit 7</th>
<th>Unit 8</th>
<th>Unit 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 Creativity and Innovation</td>
<td>X</td>
</tr>
<tr>
<td>T2 Communication and Collaboration</td>
<td>X</td>
</tr>
<tr>
<td>T3 Research and Information Fluency</td>
<td>X</td>
</tr>
<tr>
<td>T4 Critical Thinking, Problem Solving, and Decision Making</td>
<td>X</td>
</tr>
<tr>
<td>T5 Digital Citizenship</td>
<td>X</td>
</tr>
<tr>
<td>T6 Technology Operations and Concepts</td>
<td>X</td>
</tr>
</tbody>
</table>

T1 Creativity and Innovation

Students demonstrate creative thinking, construct knowledge, and develop innovative products and processes using technology. Students do the following:

a. Apply existing knowledge to generate new ideas, products, or processes.

b. Create original works as a means of personal or group expression.

c. Use models and simulations to explore complex systems and issues.

d. Identify trends and forecast possibilities.

T2 Communication and Collaboration

Students use digital media and environments to communicate and work collaboratively, including at a distance, to support individual learning and contribute to the learning of others. Students do the following:

a. Interact, collaborate, and publish with peers, experts, or others employing a variety of digital environments and media.

b. Communicate information and ideas effectively to multiple audiences using a variety of media and formats.

c. Develop cultural understanding and global awareness by engaging with learners of other cultures.

d. Contribute to project teams to produce original works or solve problems.
T3 Research and Information Fluency
Students apply digital tools to gather, evaluate, and use information. Students do the following:
 a. Plan strategies to guide inquiry.
 b. Locate, organize, analyze, evaluate, synthesize, and ethically use information from a variety of sources and media.
 c. Evaluate and select information sources and digital tools based on the appropriateness to specific tasks.
 d. Process data and report results.

T4 Critical Thinking, Problem Solving, and Decision Making
Students use critical-thinking skills to plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resources. Students do the following:
 a. Identify and define authentic problems and significant questions for investigation.
 b. Plan and manage activities to develop a solution or complete a project.
 c. Collect and analyze data to identify solutions and/or make informed decisions.
 d. Use multiple processes and diverse perspectives to explore alternative solutions.

T5 Digital Citizenship
Students understand human, cultural, and societal issues related to technology and practice legal and ethical behavior. Students do the following:
 a. Advocate and practice safe, legal, and responsible use of information and technology.
 b. Exhibit a positive attitude toward using technology that supports collaboration, learning, and productivity.
 c. Demonstrate personal responsibility for lifelong learning.
 d. Exhibit leadership for digital citizenship.

T6 Technology Operations and Concepts
Students demonstrate a sound understanding of technology concepts, systems, and operations. Students do the following:
 a. Understand and use technology systems.
 b. Select and use applications effectively and productively.
 c. Troubleshoot systems and applications.
 d. Transfer current knowledge to learning of new technologies.
Appendix E: Academic Standards

MISSISSIPPI SCIENCE FRAMEWORK COMPETENCIES

MS Science Standards for Concepts of Agriscience

<table>
<thead>
<tr>
<th>MS Science Standards</th>
<th>Course</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
<th>Unit 6</th>
<th>Unit 7</th>
<th>Unit 8</th>
<th>Unit 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ 2</td>
<td></td>
</tr>
<tr>
<td>AQ 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AQ 4</td>
<td></td>
</tr>
<tr>
<td>BIOI 1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOI 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOI 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOI 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOI 5</td>
<td></td>
</tr>
<tr>
<td>BIOI 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>BIOII 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOII 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>BIOII 4</td>
<td></td>
</tr>
<tr>
<td>BIOII 5</td>
<td></td>
</tr>
<tr>
<td>BO 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>BO 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>BO 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>BO 4</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>E4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>E5</td>
<td></td>
</tr>
<tr>
<td>ES 1</td>
<td></td>
</tr>
<tr>
<td>ES 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ES 3</td>
<td></td>
</tr>
<tr>
<td>G 1</td>
<td></td>
</tr>
<tr>
<td>G 2</td>
<td></td>
</tr>
<tr>
<td>G 3</td>
<td></td>
</tr>
<tr>
<td>GE1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>GE2</td>
<td></td>
</tr>
<tr>
<td>PS 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PHYI 2</td>
<td></td>
</tr>
<tr>
<td>PHYI 3</td>
<td></td>
</tr>
<tr>
<td>PHYI 4</td>
<td></td>
</tr>
<tr>
<td>PHYI 5</td>
<td></td>
</tr>
<tr>
<td>ZO 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ZO 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ZO 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ZO 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Marine and Aquatic Science

AQ 1 Apply inquiry-based and problem-solving processes and skills to scientific investigations.

AQ 2 Develop an understanding of physical and chemical properties of water and aquatic environments.

AQ 3 Apply an understanding of the diverse organisms found in aquatic environments.

AQ 4 Draw conclusions about the relationships between human activity and aquatic organisms.

1. **Apply inquiry-based and problem-solving processes and skills to scientific investigations.**
 a. Conduct a scientific investigation demonstrating safe procedures and proper care of laboratory equipment. (DOK 2)
 - Safety rules and symbols
 - Proper use and care of the compound light microscope, slides, chemicals, and so forth
 - Accuracy and precision in using graduated cylinders, balances, beakers, thermometers, and rulers
 b. Formulate questions that can be answered through research and experimental design. (DOK 3)
 c. Apply the components of scientific processes and methods in classroom and laboratory investigations (e.g., hypotheses, experimental design, observations, data analyses, interpretations, and theory development). (DOK 3)
 d. Construct and analyze graphs (e.g., plotting points, labeling x-and y-axis, and creating appropriate titles and legends for circle, bar, and line graphs). (DOK 2)
 e. Analyze procedures, data, and conclusions to determine the scientific validity of research. (DOK 3)
 f. Recognize and analyze alternative explanations for experimental results and to make predictions based on observations and prior knowledge. (DOK 3)
 g. Communicate and defend a scientific argument in oral, written, and graphic form. (DOK 3)

2. **Develop an understanding of physical and chemical properties of water and aquatic environments.**
 a. Analyze the physical and chemical properties of water, and justify why it is essential to living organisms. (DOK 1)
 b. Explain the causes and characteristics of tides. (DOK 1)
 c. Research, create diagrams, and summarize principles related to waves and current characteristics and formation. (DOK 2)
 d. Compare and contrast the physical and chemical parameters of dissolved O2, pH, temperature, salinity, and results obtained through analysis of different water column depths/zones. (DOK 2)
 e. Investigate the causes and effects of erosion, and discuss conclusions. (DOK 2)
 f. Describe and differentiate among the major geologic features of specific aquatic environments. (DOK 1)
 - Plate tectonics
• Rise, slope, elevation, and depth
• Formation of dunes, reefs, barrier/volcanic islands, and coastal/flood plains
• Watershed formation as it relates to bodies of freshwater

g. Compare and contrast the unique abiotic and biotic characteristics of selected aquatic ecosystems. (DOK 2)
• Barrier island, coral reef, tidal pool, and ocean
• River, stream, lake, pond, and swamp
• Bay, sound, estuary, and marsh

3. Apply an understanding of the diverse organisms found in aquatic environments.
 a. Analyze and explain the diversity and interactions among aquatic life. (DOK 3)
 • Adaptations of representative organisms for their aquatic environments
 • Relationship of organisms in food chains/web within aquatic environments
 b. Research, calculate, and interpret population data. (DOK 2)
 c. Research and compare reproductive processes in aquatic organisms. (DOK 2)
 d. Differentiate among characteristics of planktonic, nektonic, and benthic organisms. (DOK 1)
 e. Explore the taxonomy of aquatic organisms, and use dichotomous keys to differentiate among the organisms. (DOK 2)
 f. Research and explain the symbiotic relationships in aquatic ecosystems. (DOK 3)

4. Draw conclusions about the relationships between human activity and aquatic organisms.
 a. Describe the impact of natural and human activity on aquatic ecosystems, and evaluate the effectiveness of various solutions to environmental problems. (DOK 3)
 • Sources of pollution in aquatic environments and methods to reduce the effects of the pollution
 • Effectiveness of a variety of methods of environmental management and stewardship
 • Effects of urbanization on aquatic ecosystems and the effects of continued expansion
 b. Research and cite evidence of the effects of natural phenomena such as hurricanes, floods, or drought on aquatic habitats and organisms. (DOK 3)
 c. Discuss the advantages and disadvantages involved in applications of modern technology in aquatic science. (DOK 2)
 • Careers related to aquatic science
 • Modern technology within aquatic science (e.g., mariculture and aquaculture)
 • Contributions of aquatic technology to industry and government

Biology I

BIOI 1 Apply inquiry-based and problem-solving processes and skills to scientific investigations.

BIOI 2 Describe the biochemical basis of life, and explain how energy flows within and between the living systems.

BIOI 3 Investigate and evaluate the interaction between living organisms and their environment.

BIOI 4 Analyze and explain the structures and function of the levels of biological organization.
BIOI 5 Demonstrate an understanding of the molecular basis of heredity.
BIOI 6 Demonstrate an understanding of principles that explain the diversity of life and biological evolution.

1. **Apply inquiry-based and problem-solving processes and skills to scientific investigations.**
 a. Conduct a scientific investigation demonstrating safe procedures and proper care of laboratory equipment. (DOK 2)
 - Safety rules and symbols
 - Proper use and care of the compound light microscope, slides, chemicals, and so forth
 - Accuracy and precision in using graduated cylinders, balances, beakers, thermometers, and rulers
 b. Formulate questions that can be answered through research and experimental design. (DOK 3)
 c. Apply the components of scientific processes and methods in classroom and laboratory investigations (e.g., hypotheses, experimental design, observations, data analyses, interpretations, theory development). (DOK 2)
 d. Construct and analyze graphs (e.g., plotting points, labeling x- and y-axis, and creating appropriate titles and legends for circle, bar, and line graphs). (DOK 2)
 e. Analyze procedures, data, and conclusions to determine the scientific validity of research. (DOK 3)
 f. Recognize and analyze alternative explanations for experimental results and to make predictions based on observations and prior knowledge. (DOK 3)
 g. Communicate and defend a scientific argument in oral, written, and graphic form. (DOK 3)

2. **Describe the biochemical basis of life, and explain how energy flows within and between the living systems.**
 a. Explain and compare with the use of examples the types of bond formation (e.g., covalent, ionic, hydrogen, etc.) between or among atoms. (DOK 2)
 - Subatomic particles and arrangement in atoms
 - Importance of ions in biological processes
 b. Develop a logical argument defending water as an essential component of living systems (e.g., unique bonding and properties including polarity, high specific heat, surface tension, hydrogen bonding, adhesion, cohesion, and expansion upon freezing). (DOK 2)
 c. Classify solutions as acidic, basic, or neutral, and relate the significance of the pH scale to an organism’s survival (e.g., consequences of having different concentrations of hydrogen and hydroxide ions). (DOK 2)
 d. Compare and contrast the structure, properties, and principle functions of carbohydrates, lipids, proteins, and nucleic acids in living organisms. (DOK 2)
 - Basic chemical composition of each group
 - Building components of each group (e.g., amino acids, monosaccharides, nucleotides, etc.)
 - Basic functions (e.g., energy, storage, cellular, and heredity) of each group
e. Examine the life processes to conclude the role enzymes play in regulating biochemical reactions. (DOK 2)
 - Enzyme structure
 - Enzyme function, including enzyme-substrate specificity and factors that affect enzyme function (pH and temperature)

f. Describe the role of adenosine triphosphate (ATP) in making energy available to cells. (DOK 1)
 - ATP structure
 - ATP function

*g. Analyze and explain the biochemical process of photosynthesis and cellular respiration, and draw conclusions about the roles of the reactant and products in each. (DOK 3)
 - Photosynthesis and respiration (reactants and products)
 - Light-dependent reactions and light-independent reactions in photosynthesis, including requirements and products of each
 - Aerobic and anaerobic processes in cellular respiration, including products each and energy differences

3. **Investigate and evaluate the interaction between living organisms and their environment.**
 a. Compare and contrast the characteristics of the world’s major biomes (e.g., deserts, tundra, taiga, grassland, temperate forest, and tropical rainforest). (DOK 2)
 - Plant and animal species
 - Climate (temperature and rainfall)
 - Adaptations of organisms

b. Provide examples to justify the interdependence among environmental elements. (DOK 2)
 - Biotic and abiotic factors in an ecosystem (e.g., water, carbon, oxygen, mold, and leaves)
 - Energy flow in ecosystems (e.g., energy pyramids and photosynthetic organisms to herbivores, carnivores, and decomposers)
 - Roles of beneficial bacteria
 - Interrelationships of organisms (e.g., cooperation, predation, parasitism, commensalism, symbiosis, and mutualism)

c. Examine and evaluate the significance of natural events and human activities on major ecosystems (e.g., succession, population growth, technology, loss of genetic diversity, and consumption of resources). (DOK 2)

4. **Analyze and explain the structures and function of the levels of biological organization.**
 a. Differentiate among plant and animal cells and eukaryotic and prokaryotic cells. (DOK 2)
 - Functions of all major cell organelles and structures (e.g., nucleus, mitochondrion, rough ER, smooth ER, ribosomes, Golgi bodies, vesicles, lysosomes, vacuoles, microtubules, microfilaments, chloroplast, cytoskeleton, centrioles, nucleolus, chromosomes, nuclear membrane, cell wall, cell membrane [active and passive transport], and cytosol)
• Components of mobility (e.g., cilia, flagella, and pseudopodia)

b. Differentiate between types of cellular reproduction. (DOK 1)
 • Main events in the cell cycle and cell mitosis (including differences in plant and animal cell divisions)
 • Binary fission (e.g., budding, vegetative propagation, etc.)
 • Significance of meiosis in sexual reproduction
 • Significance of crossing over

c. Describe and differentiate among the organizational levels of organisms (e.g., cells, tissues, organs, systems, and types of tissues.) (DOK 1)

d. Explain and describe how plant structures (vascular and nonvascular) and cellular functions are related to the survival of plants (e.g., movement of materials and plant reproduction). (DOK 1)

5. **Demonstrate an understanding of the molecular basis of heredity.**
a. Analyze and explain the molecular basis of heredity and the inheritance of traits to successive generations by using the Central Dogma of Molecular Biology. (DOK 3)
 • Structures of DNA and RNA
 • Processes of replication, transcription, and translation
 • Messenger RNA codon charts

b. Utilize Mendel’s laws to evaluate the results of monohybrid Punnett squares involving complete dominance, incomplete dominance, codominance, sex linked, and multiple alleles (including outcome percentage of both genotypes and phenotypes). (DOK 2)

c. Examine inheritance patterns using current technology (e.g., pedigrees, karyotypes, and gel electrophoresis). (DOK 2)

d. Discuss the characteristics and implications of both chromosomal and gene mutations. (DOK 2)
 • Significance of nondisjunction, deletion, substitutions, translocation, and frame shift mutation in animals
 • Occurrence and significance of genetic disorders such as sickle cell anemia, Tay-Sachs disorder, cystic fibrosis, hemophilia, Down syndrome, and color blindness

6. **Demonstrate an understanding of principles that explain the diversity of life and biological evolution.**
a. Draw conclusions about how organisms are classified into a hierarchy of groups and subgroups based on similarities that reflect their evolutionary relationships. (DOK 2)
 • Characteristics of the six kingdoms
 • Major levels in the hierarchy of taxa (e.g., kingdom, phylum/division, class, order, family, genus, and species)
 • Body plans (symmetry)
 • Methods of sexual reproduction (e.g., conjugation, fertilization, and pollination)
 • Methods of asexual reproduction (e.g., budding, binary fission, regeneration, and spore formation)

b. Critique data (e.g., comparative anatomy, Biogeography, molecular biology, fossil record, etc.) used by scientists (e.g., Redi, Needham, Spallanzani, and Pasteur) to develop an understanding of evolutionary processes and patterns. (DOK 3)
c. Research and summarize the contributions of scientists (including Darwin, Malthus, Wallace, Lamarck, and Lyell) whose work led to the development of the theory of evolution. (DOK 2)

d. Analyze and explain the roles of natural selection, including the mechanisms of speciation (e.g., mutations, adaptations, and geographic isolation) and applications of speciation (e.g., pesticide and antibiotic resistance). (DOK 3)

e. Differentiate among chemical evolution, organic evolution, and the evolutionary steps along the way to aerobic heterotrophs and photosynthetic autotrophs. (DOK 2)

Biology II

<table>
<thead>
<tr>
<th>BIOII 1</th>
<th>Apply inquiry-based and problem-solving processes and skills to scientific investigations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOII 2</td>
<td>Describe and contrast the structures, functions, and chemical processes of the cell.</td>
</tr>
<tr>
<td>BIOII 3</td>
<td>Investigate and discuss the molecular basis of heredity.</td>
</tr>
<tr>
<td>BIOII 4</td>
<td>Demonstrate an understanding of the factors that contribute to evolutionary theory</td>
</tr>
<tr>
<td></td>
<td>and natural selection.</td>
</tr>
<tr>
<td>BIOII 5</td>
<td>Develop an understanding of organism classification.</td>
</tr>
</tbody>
</table>

1. **Apply inquiry-based and problem-solving processes and skills to scientific investigations.**
 a. Use current technologies such as CD-ROM, DVD, Internet, and online data search to explore current research related to a specific topic. (DOK 3)
 b. Clarify research questions, and design laboratory investigations. (DOK 3)
 c. Demonstrate the use of scientific inquiry and methods to formulate, conduct, and evaluate laboratory investigations (e.g., hypotheses, experimental design, observations, data analysis, interpretations, and theory development). (DOK 3)
 d. Organize data to construct graphs (e.g., plotting points, labeling x- and y-axis, and creating appropriate titles and legends for circle, bar, and line graphs), draw conclusions, and make inferences. (DOK 3)
 e. Evaluate procedures, data, and conclusions to critique the scientific validity of research. (DOK 3)
 f. Formulate and revise scientific explanations and models using logic and evidence (data analysis). (DOK 3)
 g. Collect, analyze, and draw conclusions from data to create a formal presentation using available technology (e.g., computers, calculators, SmartBoard, CBLs, etc.). (DOK 3)

2. **Describe and contrast the structures, functions, and chemical processes of the cell.**
 a. Relate the structure and function of a selectively permeable membrane to its role in diffusion and osmosis. (DOK 2)
 b. Summarize how cell regulation controls and coordinates cell growth and division. (DOK 2)
 c. Analyze and describe the function of enzymes in biochemical reactions. (DOK 2)
 • The impact of enzymatic reactions on biochemical processes
 • Factors that affect enzyme function (e.g., pH, concentration, temperature, etc.)
 d. Differentiate between photosynthesis and cellular respiration. (DOK 2)
• Cellular sites and major pathways of anaerobic and aerobic respiration (with reactants, products, and ATP per monosaccharide)
• Cellular respiration with respect to the sites at which they take place, the reactions involved, and the energy input and output in each stage (e.g., glycolysis, Krebs cycle, and electron transport chain)
• Pigments, absorption, reflection of light, and light-dependent and light-independent reactions of photosynthesis
• Oxidation and reduction reactions

3. **Investigate and discuss the molecular basis of heredity.**
 a. Explain how the process of meiosis clarifies the mechanism underlying Mendel’s conclusions about segregation and independent assortment on a molecular level. (DOK 1)
 b. Research and explain how major discoveries led to the determination of DNA structure. (DOK 2)
 c. Relate gene expression (e.g., replication, transcription, and translation) to protein structure and function. (DOK 2)
 - Translation of a messenger RNA strand into a protein
 - Processing by organelles so that the protein is appropriately packaged, labeled, and eventually exported by the cell
 - Messenger RNA codon charts to determine the effects of different types of mutations on amino acid sequence and protein structure (e.g., sickle cell anemia resulting from base substitution mutation)
 - Gene expression regulated in organisms so that specific proteins are synthesized only when they are needed by the cell (e.g., allowing cell specialization)
 d. Assess the potential implications of DNA technology with respect to its impact on society. (DOK 3)
 - Modern DNA technologies (e.g., polymerase chain reaction (PCR), gene splicing, gel electrophoresis, transformation, and recombinant DNA) in agriculture, medicine, and forensics
 e. Develop a logical argument defending or refuting bioethical issues arising from applications of genetic technology (e.g., the human genome project, cloning, gene therapy, and stem cell research). (DOK 3)

4. **Demonstrate an understanding of the factors that contribute to evolutionary theory and natural selection.**
 a. Explain the history of life on earth, and infer how geological changes provide opportunities and constraints for biological evolution. (DOK 2)
 - Main periods of the geologic timetable of earth’s history
 - Roles of catastrophic and gradualistic processes in shaping planet Earth
 b. Provide support for the argument based upon evidence from anatomy, embryology, biochemistry, and paleontology that organisms descended with modification from common ancestry. (DOK 2)
 c. Identify and provide supporting evidence for the evolutionary relationships among various organisms using phylogenetic trees and cladograms. (DOK 2)
 d. Formulate a scientific explanation based on fossil records of ancient life forms, and describe how new species could originate as a result of geological isolation and reproductive isolation. (DOK 2)
e. Compare and contrast the basic types of selection (e.g., disruptive, stabilizing, directional, etc.). (DOK 2)
f. Cite examples to justify behaviors that have evolved through natural selection (e.g., migration, parental care, use of tools, etc.). (DOK 1)
g. Research and explain the contributions of 19th century scientists (e.g., Malthus, Wallace, Lyell, and Darwin) on the formulation of ideas about evolution. (DOK 2)
h. Develop a logical argument describing ways in which the influences of 20th century science have impacted the development of ideas about evolution (e.g., synthetic theory of evolution and molecular biology). (DOK 3)
i. Analyze changes in an ecosystem resulting from natural causes (succession), changes in climate, human activity (pollution and recycling), or introduction of nonnative species. (DOK 2)

5. **Develop an understanding of organism classification.**
 a. Classify organisms according to traditional Linnaean classification characteristics (e.g., cell structure, biochemistry, anatomy, fossil record, and methods of reproduction) and the cladistic approach. (DOK 2)
 b. Categorize organisms according to the characteristics that distinguish them as Bacteria, Archaea, or Eucarya. (DOK 1)
 - Bacteria, fungi, and protists
 - Characteristics of invertebrates (e.g., habitat, reproduction, body plan, and locomotion) as related to phyla (e.g., Porifera, Cnidarians, Nematoda, Annelida, Platyhelminthes, and Arthropoda) and classes (e.g., Insecta, Crustacea, Arachnida, Mollusca, and Echinodermata)
 - Characteristics of vertebrates (e.g., habitat, reproduction, body plan, and locomotion) as related to classes (e.g., Agnatha, Chondrichthyes, Osteichthyes, Amphibia, Reptilia, Aves, and Mammalia)
 - Nomenclature of various types of plants (e.g., Bryophyta, Tracheophyta, Gymnospermae, Angiospermae, Monocotyledonae, Dicotyledonae, vascular plants, and nonvascular plants)

Botany

BO 1	Apply inquiry-based and problem-solving processes and skills to scientific investigations.
BO 2	Distinguish among the characteristics of botanical organization, structure, and function.
BO 3	Demonstrate an understanding of plant reproduction.
BO 4	Draw conclusions about the factors that affect the adaptation and survival of plants.
BO 5	Relate an understanding of plant genetics to its uses in modern living.

1. **Apply inquiry-based and problem-solving processes and skills to scientific investigations.**
 a. Conduct a scientific investigation demonstrating safe procedures and proper care of laboratory equipment. (DOK 2)
 - Safety rules and symbols
 - Proper use and care of the compound light microscope, slides, chemicals, and so forth
• Accuracy and precision in using graduated cylinders, balances, beakers, thermometers, and rulers

b. Formulate questions that can be answered through research and experimental design. (DOK 3)

c. Apply the components of scientific processes and methods in classroom and laboratory investigations (e.g., hypotheses, experimental design, observations, data analyses, interpretations, and theory development). (DOK 3)

d. Construct and analyze graphs (e.g., plotting points, labeling x- and y-axis, creating appropriate titles and legends for circle, bar, and line graphs). (DOK 2)

e. Analyze procedures, data, and conclusions to determine the scientific validity of research. (DOK 3)

f. Recognize and analyze alternative explanations for experimental results and to make predictions based on observations and prior knowledge. (DOK 3)

g. Communicate and defend a scientific argument in oral, written, and graphic form. (DOK 3)

2. **Distinguish among the characteristics of botanical organization, structure, and function.**
a. Relate plant cell structures to their functions (e.g., major organelles, cell wall components, photosynthetic chemical reactions, plant pigments, plant tissues, roots, stems, leaves, and flowers). (DOK 1)

b. Differentiate the characteristics found in various plant divisions. (DOK 2)
 • Differences and similarities of nonvascular plants
 • Characteristics of seed-bearing and non-seed-bearing vascular plants relative to taxonomy
 • Major vegetative structures and their modifications in angiosperms and gymnosperms

c. Compare and contrast leaf modifications of gymnosperms and angiosperms (e.g., needles, overlapping scales, simple leaves, compound leaves, evergreen trees, and deciduous trees). (DOK 2)

d. Apply the modern classification scheme utilized in naming plants to identify plant specimens. (DOK 2)
 • Classification scheme used in botany
 • Classification of native Mississippi plants

e. Use inquiry to investigate and discuss the physical and chemical processes of plants. (DOK 3)
 • Relationships among photosynthesis, cellular respiration, and translocation
 • Importance of soil type and soil profiles to plant survival
 • Mechanism of water movement in plants
 • Effects of environmental conditions for plant survival
 • Tropic responses of a plant organ to a given stimulus

3. **Demonstrate an understanding of plant reproduction.**
a. Compare and contrast reproductive structures (e.g., cones and flowers). (DOK 2)

b. Differentiate among the vegetative organs of monocots, herbaceous dicots, and woody dicots. (DOK 1)

c. Differentiate between the structures and processes of sexual and asexual reproduction in plants. (DOK 1)
• Reproductive structures, their modifications, and the mechanisms involved in plant reproduction
• Functions of flower parts, seeds, and cones
• Spore production in bryophytes and ferns
d. Explain and provide examples of the concept of alternation of generations and its examples. (DOK 2)
e. Categorize types of fruits and methods of seed distribution in plants. (DOK 1)
f. Research and compare various methods of plant propagation. (DOK 2)

4. **Draw conclusions about the factors that affect the adaptation and survival of plants.**
 a. List and assess several adaptations of plants to survive in a given biome. (DOK 2)
 b. Design and conduct an experiment to determine the effects of environmental factors on photosynthesis. (DOK 3)
 c. Explain how natural selection and the evolutionary consequences (e.g., adaptation or extinction) support scientific explanations for similarities of ancient life forms in the fossil record and molecular similarities present in living organisms. (DOK 2)
 d. Research factors that might influence or alter plant stability, and propose actions that may reduce the negative impacts of human activity. (DOK 2)

5. **Relate an understanding of plant genetics to its uses in modern living.**
 a. Research, prepare, and present a position relating to issues surrounding the current botanical trends involving biotechnology. (DOK 3)
 b. Apply an understanding of the principles of plant genetics to analyze monohybrid and dihybrid crosses, and predict the potential effects the crosses might have on agronomy and agriculture. (DOK 3)
 c. Discuss the effects of genetic engineering of plants on society. (DOK 2)
 d. Describe the chemical compounds extracted from plants, their economical importance, and the impact on humans. (DOK 3)
• Plant extracts, their function, and origin
• Impact of the timber industry on local and national economy

Chemistry I

<table>
<thead>
<tr>
<th>CHI 1</th>
<th>Apply inquiry-based and problem-solving processes and skills to scientific investigations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHI 2</td>
<td>Demonstrate an understanding of the atomic model of matter by explaining atomic structure and chemical bonding.</td>
</tr>
<tr>
<td>CHI 3</td>
<td>Develop an understanding of the periodic table.</td>
</tr>
<tr>
<td>CHI 4</td>
<td>Analyze the relationship between microscopic and macroscopic models of matter.</td>
</tr>
<tr>
<td>CHI 5</td>
<td>Compare factors associated with acid/base and oxidation/reduction reactions.</td>
</tr>
</tbody>
</table>

1. **Apply inquiry-based and problem-solving processes and skills to scientific investigations.**
 a. Use current technologies such as CD-ROM, DVD, Internet, and online data search to explore current research related to a specific topic. (DOK 3)
 b. Clarify research questions, and design laboratory investigations. (DOK 3)
 c. Demonstrate the use of scientific inquiry and methods to formulate, conduct, and evaluate laboratory investigations (e.g., hypotheses, experimental design, observations, data analyses, interpretations, and theory development). (DOK 3)
d. Organize data to construct graphs (e.g., plotting points, labeling x- and y-axis, and creating appropriate titles and legends for circle, bar, and line graphs), draw conclusions, and make inferences. (DOK 3)

e. Evaluate procedures, data, and conclusions to critique the scientific validity of research. (DOK 3)

f. Formulate and revise scientific explanations and models using logic and evidence (data analysis). (DOK 3)

g. Collect, analyze, and draw conclusions from data to create a formal presentation using available technology (e.g., computers, calculators, SmartBoard, CBLs, etc.). (DOK 3)

2. **Demonstrate an understanding of the atomic model of matter by explaining atomic structure and chemical bonding.**
 a. Describe and classify matter based on physical and chemical properties and interactions between molecules or atoms. (DOK 1)
 - Physical properties (e.g., melting points, densities, and boiling points) of a variety of substances
 - Substances and mixtures
 - Three states of matter in terms of internal energy, molecular motion, and the phase transitions between them
 b. Research and explain crucial contributions and critical experiments of Dalton, Thomson, Rutherford, Bohr, de Broglie, and Schrödinger, and describe how each discovery contributed to the current model of atomic and nuclear structure. (DOK 2)
 c. Develop a model of atomic and nuclear structure based on theory and knowledge of fundamental particles. (DOK 2)
 - Properties and interactions of the three fundamental particles of the atom
 - Laws of conservation of mass, constant composition, definite proportions, and multiple proportions
 d. Write appropriate equations for nuclear decay reactions, describe how the nucleus changes during these reactions, and compare the resulting radiation with regard to penetrating ability. (DOK 1)
 - Three major types of radioactive decay (e.g., alpha, beta, and gamma) and the properties of the emissions (e.g., composition, mass, charge, and penetrating power)
 - The concept of half-life for a radioactive isotope (e.g., carbon-14 dating) based on the principle that the decay of any individual atom is a random process
 e. Compare the properties of compounds according to their type of bonding. (DOK 1)
 - Covalent, ionic, and metallic bonding
 - Polar and nonpolar covalent bonding
 - Valence electrons and bonding atoms
 f. Compare different types of intermolecular forces, and explain the relationship between intermolecular forces, boiling points, and vapor pressure when comparing differences in properties of pure substances. (DOK 1)
 g. Develop a three-dimensional model of molecular structure. (DOK 2)
 - Lewis dot structures for simple molecules and ionic compounds
 - Valence shell electron pair repulsion theory (VSEPR)
3. Develop an understanding of the periodic table.
 a. Calculate the number of protons, neutrons, and electrons in individual isotopes using atomic numbers and mass numbers, write electron configurations of elements and ions following the Aufbau principle, and balance equations representing nuclear reactions. (DOK 1)
 b. Analyze patterns and trends in the organization of elements in the periodic table, and compare their relationship to position in the periodic table. (DOK 2)
 • Atomic number, atomic mass, mass number, and number of protons, electrons, and neutrons in isotopes of elements
 • Average atomic mass calculations
 • Chemical characteristics of each region
 • Periodic properties (e.g., metal/nonmetal/metalloid behavior, electrical/heat conductivity, electronegativity, electron affinity, ionization energy, and atomic/covalent/ionic radius)
 c. Classify chemical reactions by type. (DOK 2)
 • Single displacement, double displacement, synthesis (combination), decomposition, disproportionation, combustion, or precipitation
 • Products (given reactants) or reactants (given products) for each reaction type
 • Solubility rules for precipitation reactions and the activity series for single and double displacement reactions
 d. Use stoichiometry to calculate the amount of reactants consumed and products formed. (DOK 3)
 • Difference between chemical reactions and chemical equations
 • Formulas and calculations of the molecular (molar) masses
 • Empirical formula given the percent composition of elements
 • Molecular formula given the empirical formula and molar mass

4. Analyze the relationship between microscopic and macroscopic models of matter.
 a. Calculate the number of protons, neutrons, and electrons in individual isotopes using atomic numbers and mass numbers, write electron configurations of elements and ions following the Aufbau principle, and balance equations representing nuclear reactions. (DOK 1)
 b. Analyze patterns and trends in the organization of elements in the periodic table, and compare their relationship to position in the periodic table. (DOK 2)
 • Atomic number, atomic mass, mass number, and number of protons, electrons, and neutrons in isotopes of elements
 • Average atomic mass calculations
 • Chemical characteristics of each region
 • Periodic properties (e.g., metal/nonmetal/metalloid behavior, electrical/heat conductivity, electronegativity, electron affinity, ionization energy, and atomic/covalent/ionic radius)
 c. Classify chemical reactions by type. (DOK 2)
 • Single displacement, double displacement, synthesis (combination), decomposition, disproportionation, combustion, or precipitation
 • Products (given reactants) or reactants (given products) for each reaction type
• Solubility rules for precipitation reactions and the activity series for single and double displacement reactions
d. Use stoichiometry to calculate the amount of reactants consumed and products formed. (DOK 3)
• Difference between chemical reactions and chemical equations
• Formulas and calculations of the molecular (molar) masses
• Empirical formula given the percent composition of elements
• Molecular formula given the empirical formula and molar mass

5. **Compare factors associated with acid/base and oxidation/reduction reactions.**
 a. Analyze and explain acid/base reactions. (DOK 2)
 • Properties of acids and bases, including how they affect indicators and the relative pH of the solution
 • Formation of acidic and basic solutions
 • Definition of pH in terms of the hydronium ion concentration and the hydroxide ion concentration
 • The pH or pOH from the hydrogen ion or hydroxide ion concentrations of solution
 • How a buffer works and examples of buffer solutions
 b. Classify species in aqueous solutions according to the Arrhenius and Bronsted–Lowry definitions respectively, and predict products for aqueous neutralization reactions. (DOK 2)
 c. Analyze a reduction/oxidation reaction (REDOX) to assign oxidation numbers (states) to reaction species, and identify the species oxidized and reduced, the oxidizing agent, and reducing agent. (DOK 2)

Organic Chemistry

ORGC 1 Apply inquiry-based and problem-solving processes and skills to scientific investigations.

ORGC 2 Demonstrate an understanding of the properties, structure, and function of organic compounds.

ORGC 3 Discuss the versatility of polymers and the diverse application of organic chemicals.

1. **Apply inquiry-based and problem-solving processes and skills to scientific investigations.**
 a. Conduct a scientific investigation demonstrating safe procedures and proper care of laboratory equipment. (DOK 2)
 • Safety rules and symbols
 • Proper use and care of the compound light microscope, slides, chemicals, and so forth
 • Accuracy and precision in using graduated cylinders, balances, beakers, thermometers, and rulers
 b. Formulate questions that can be answered through research and experimental design. (DOK 3)
 c. Apply the components of scientific processes and methods in classroom and laboratory investigations (e.g., hypotheses, experimental design, observations, data analyses, interpretations, and theory development). (DOK 3)
d. Organize data to construct graphs (e.g., plotting points, labeling x- and y-axis, and creating appropriate titles and legends for circle, bar, and line graphs), draw conclusions, and make inferences. (DOK 3)

e. Analyze procedures, data, and conclusions to determine the scientific validity of research. (DOK 3)

f. Recognize and analyze alternative explanations for experimental results, and make predictions based on observations and prior knowledge. (DOK 3)

g. Communicate and defend a scientific argument in oral, written, and graphic form. (DOK 3)

2. **Demonstrate an understanding of the properties, structure, and function of organic compounds.**

a. Apply International Union of Pure and Applied Chemistry (IUPAC) nomenclature, and differentiate the structure of aliphatic, aromatic, and cyclic hydrocarbon compounds. (DOK 1)
 - Structures of hydrocarbon compounds
 - Isomerism in hydrocarbon compounds

b. Relate structure to physical and chemical properties of hydrocarbon. (DOK 1)

c. Apply principles of geometry and hybridization to organic molecules. (DOK 2)
 - Lewis structures for organic molecules
 - Bond angles
 - Hybridization (as it applies to organic molecules)

d. Write, complete, and classify common reactions for aliphatic, aromatic, and cyclic hydrocarbons. (DOK 1)

e. Construct, solve, and explain equations representing combustion reactions, substitution reactions, dehydrogenation reactions, and addition reactions. (DOK 2)

f. Classify functional groups (e.g., alcohols, ethers, aldehydes, ketones, carboxylic acids, esters, amines, amides, and nitrides) by their structure and properties. (DOK 2)
 - Structural formulas from functional group names and vice versa
 - Chemical and physical properties of compounds containing functional groups
 - Equations representing the transformation of one functional group into another

3. **Discuss the versatility of polymers and the diverse application of organic chemicals.**

a. Describe and classify the synthesis, properties, and uses of polymers. (DOK 2)
 - Common polymers
 - Synthesis of polymers from monomers by addition or condensation
 - Condensations of plastics according to their commercial types
 - Elasticity and other polymer properties

b. Develop a logical argument supporting the use of organic chemicals and their application in industry, drug manufacture, and biological chemistry. (DOK 1)
 - Common uses of polymers and organic compounds in medicine, drugs, and personal care products
 - Compounds that have the property to dye materials
 - Petrochemical production
 - Biologically active compounds in terms of functional group substrate interaction

c. Research and summarize the diversity, applications, and economics of industrial chemicals (solvents, coatings, surfactants, etc.). (DOK 3)
Earth and Space Science

E1 Apply inquiry-based and problem-solving processes and skills to scientific investigations.

E2 Develop an understanding of the history and evolution of the universe and earth.

E3 Discuss factors that are used to explain the geological history of earth.

E4 Demonstrate an understanding of earth systems relating to weather and climate.

E5 Apply an understanding of ecological factors to explain relationships between earth systems.

1. **Apply inquiry-based and problem-solving processes and skills to scientific investigations.**
 a. Conduct a scientific investigation demonstrating safe procedures and proper care of laboratory equipment. (DOK 2)
 - Safety rules and symbols
 - Proper use and care of the compound light microscope, slides, chemicals, and so forth
 - Accuracy and precision in using graduated cylinders, balances, beakers, thermometers, and rulers.
 b. Formulate questions that can be answered through research and experimental design. (DOK 3)
 c. Apply the components of scientific processes and methods in classroom and laboratory investigations (e.g., hypotheses, experimental design, observations, data analyses, interpretations, and theory development). (DOK 3)
 d. Construct and analyze graphs (e.g., plotting points, labeling x- and y-axis, creating appropriate titles and legends for circle, bar, and line graphs). (DOK 2)
 e. Analyze procedures, data, and conclusions to determine the scientific validity of research. (DOK 3)
 f. Recognize and analyze alternative explanations for experimental results and to make predictions based on observations and prior knowledge. (DOK 3)
 g. Communicate and defend a scientific argument in oral, written, and graphic form. (DOK 3)

2. **Develop an understanding of the history and evolution of the universe and earth.**
 a. Summarize the origin and evolution of the universe. (DOK 2)
 - Big bang theory
 - Microwave background radiation
 - The Hubble constant
 - Evidence of the existence of dark matter and dark energy in the universe and the history of the universe
 b. Differentiate methods used to measure space distances, including astronomical unit, light-year, stellar parallax, Cepheid variables, and the red shift. (DOK 1)
 c. Interpret how gravitational attraction played a role in the formation of the planetary bodies and how the fusion of hydrogen and other processes in “ordinary” stars and supernovae lead to the formation of all other elements. (DOK 2)
 d. Summarize the early evolution of the earth, including the formation of earth’s solid layers (e.g., core, mantle, and crust), the distribution of major elements, the origin of internal heat sources, and the initiation of plate tectonics. (DOK 2)
• How the decay of radioactive isotopes is used to determine the age of rocks, earth, and the solar system
• How Earth acquired its initial oceans and atmosphere

3. Discuss factors that are used to explain the geological history of earth.
 a. Develop an understanding of how plate tectonics create certain geological features, materials, and hazards. (DOK 1)
 • Plate tectonic boundaries (e.g., divergent, convergent, and transform)
 • Modern and ancient geological features to each kind of plate tectonic boundary
 • Production of particular groups of igneous and metamorphic rocks and mineral resources
 • Sedimentary basins created and destroyed through time
 b. Compare and contrast types of mineral deposits/groups (e.g., oxides, carbonates, halides, sulfides, sulfates, silicates, and phosphates). (DOK 2)
 c. Categorize minerals and rocks by determining their physical and/or chemical characteristics. (DOK 2)
 d. Justify the causes of certain geological hazards (e.g., earthquakes, volcanoes, and tsunamis) to their effects on specific plate tectonic locations. (DOK 2)
 e. Interpret and explain how rock relationships and fossils are used to reconstruct the geologic history of the earth. (DOK 2)
 f. Apply principles of relative age (e.g., superposition, original horizontality, crosscutting relations, and original lateral continuity) to support an opinion related to earth’s geological history. (DOK 3)
 • Types of unconformity (e.g., disconformity, angular unconformity, and nonconformity)
 • Geological timetable
 g. Apply the principle of uniformitarianism to relate sedimentary rock associations and their fossils to the environments in which the rocks were deposited. (DOK 2)
 h. Compare and contrast the relative and absolute dating methods (e.g., the principle of fossil succession, radiometric dating, and paleomagnetism) for determining the age of the earth. (DOK 1)

4. Demonstrate an understanding of earth systems relating to weather and climate.
 a. Explain the interaction of earth systems that affect weather and climate. (DOK 1)
 • Latitudinal variations in solar heating
 • The effects of Coriolis forces on ocean currents, cyclones, anticyclones, ocean currents, topography, and air masses (e.g., warm fronts, cold fronts, stationary fronts, and occluded fronts).
 b. Interpret the patterns in temperature and precipitation that produce the climate regions on earth, and relate them to the hazards associated with extreme weather events and climate change (e.g., hurricanes, tornadoes, El Niño/La Niña, and global warming). (DOK 2)
 c. Justify how changes in global climate and variation in earth/sun relationships contribute to natural and anthropogenic (human-caused) modification of atmospheric composition. (DOK 2)
 d. Summarize how past and present actions of ice, wind, and water contributed to the types and distributions of erosional and depositional features in landscapes. (DOK 1)
 e. Research and explain how external forces affect earth’s topography. (DOK 2)
• How surface water and groundwater act as the major agents of physical and chemical weathering
• How soil results from weathering and biological processes
• Processes and hazards associated with both sudden and gradual mass wasting

5. **Apply an understanding of ecological factors to explain relationships between earth systems.**
 a. Draw conclusions about how life on earth shapes earth systems and responds to the interaction of earth systems (lithosphere, hydrosphere, atmosphere, and biosphere). (DOK 3)
 • Nature and distribution of life on earth, including humans, to the chemistry and availability of water
 • Distribution of biomes (e.g., terrestrial, freshwater, and marine) to climate regions through time
 • Geochemical and ecological processes (e.g., rock, hydrologic, carbon, and nitrogen) that interact through time to cycle matter and energy and how human activity alters the rates of these processes (e.g., fossil fuel formation and combustion; damming and channeling of rivers)
 b. Interpret the record of shared ancestry (fossils), evolution, and extinction as related to natural selection. (DOK 2)
 c. Identify the cause-and-effect relationships of the evolutionary innovations that most profoundly shaped earth systems. (DOK 1)
 • Photosynthesis and the atmosphere
 • Multicellular animals and marine environments
 • Land plants and terrestrial environments
d. Cite evidence about how dramatic changes in earth’s atmosphere influenced the evolution of life. (DOK 1)

Environmental Science

ES 1 Apply inquiry-based and problem-solving processes and skills to scientific investigations.

ES 2 Develop an understanding of the relationship of ecological factors that affect an ecosystem.

ES 3 Discuss the impact of human activities on the environment, conservation activities, and efforts to maintain and restore ecosystems.

1. **Apply inquiry-based and problem-solving processes and skills to scientific investigations.**
 a. Conduct a scientific investigation demonstrating safe procedures and proper care of laboratory equipment. (DOK 2)
 • Safety rules and symbols
 • Proper use and care of the compound light microscope, slides, chemicals, and so forth
 • Accuracy and precision in using graduated cylinders, balances, beakers, thermometers, and rulers
 b. Formulate questions that can be answered through research and experimental design. (DOK 3)
c. Apply the components of scientific processes and methods in classroom and laboratory investigations (e.g., hypotheses, experimental design, observations, data analyses, interpretations, and theory development). (DOK 3)

d. Construct and analyze graphs (e.g., plotting points, labeling x- and y-axis, and creating appropriate titles and legends for circle, bar, and line graphs). (DOK 2)

e. Analyze procedures, data, and conclusions to determine the scientific validity of research. (DOK 3)

f. Recognize and analyze alternative explanations for experimental results and to make predictions based on observations and prior knowledge. (DOK 3)

g. Communicate and defend a scientific argument in oral, written, and graphic form. (DOK3)

2. **Develop an understanding of the relationship of ecological factors that affect an ecosystem.**

 a. Compare ways in which the three layers of the biosphere change over time and their influence on an ecosystem’s ability to support life. (DOK 2)

 b. Explain the flow of matter and energy in ecosystems. (DOK 2)
 - Interactions between biotic and abiotic factors
 - Indigenous plants and animals and their roles in various ecosystems
 - Biogeochemical cycles within the environment

 c. Predict the impact of the introduction, removal, and reintroduction of an organism on an ecosystem. (DOK 3)

 d. Develop a logical argument explaining the relationships and changes within an ecosystem. (DOK 2)
 - How a species adapts to its niche
 - Process of primary and secondary succession and its effects on a population
 - How changes in the environment might affect organisms

 e. Explain the causes and effects of changes in population dynamics (e.g., natural selection, exponential growth, and predator/prey relationships) to carrying capacity and limiting factors. (DOK 2)

 f. Research and explain how habitat destruction leads to the loss of biodiversity. (DOK 2)

 g. Compare and contrast the major biomes of the world’s ecosystems, including location, climate, adaptations, and diversity. (DOK 1)

3. **Discuss the impact of human activities on the environment, conservation activities, and efforts to maintain and restore ecosystems.**

 a. Summarize the effects of human activities on resources in the local environments. (DOK 2)
 - Sources, uses, quality, and conservation of water
 - Renewable and nonrenewable resources
 - Effects of pollution (e.g., water, noise, air, etc.) on the ecosystem

 b. Research and evaluate the impacts of human activity and technology on the lithosphere, hydrosphere, and atmosphere, and develop a logical argument to support how communities restore ecosystems. (DOK 3)

 c. Research and evaluate the use of renewable and nonrenewable resources, and critique efforts to conserve natural resources and reduce global warming in the United States including (but not limited) to Mississippi. (DOK 3)
Genetics

G 1 Apply inquiry-based and problem-solving processes and skills to scientific investigations.

G 2 Analyze the structure and function of the cell and cellular organelles.

G 3 Apply the principles of heredity to demonstrate genetic understandings.

1. **Use critical thinking and scientific problem solving in designing and performing biological research and experimentation.** (L, P, E)
 a. Use current technologies such as CD-ROM, DVD, Internet, and online data search to explore current research related to a specific topic. (DOK 3)
 b. Clarify research questions, and design laboratory investigations. (DOK 3)
 c. Demonstrate the use of scientific inquiry and methods to formulate, conduct, and evaluate laboratory investigations (e.g., hypotheses, experimental design, observations, data analyses, interpretations, and theory development). (DOK 3)
 d. Organize data to construct graphs (e.g., plotting points, labeling x- and y-axis, creating appropriate titles and legends for pie, bar, and line graphs) to draw conclusions and make inferences. (DOK 3)
 e. Evaluate procedures, data, and conclusions to critique the scientific validity of research. (DOK 3)
 f. Formulate and revise scientific explanations and models using logic and evidence (data analysis). (DOK 3)
 g. Collect, analyze, and draw conclusions from data to create a formal presentation using available technology (e.g., computers, calculators, SmartBoard, CBLs, etc.). (DOK 3)

2. **Review the structure and function of the cell as it applies to genetics.** (L)
 a. Cite evidence to illustrate how the structure and function of cells are involved in the maintenance of life. (DOK 2)
 b. Describe how organic components are integral to biochemical processes. (DOK 2)
 c. Differentiate among the processes by which plants and animals reproduce. (DOK 1)
 - Cell cycle and mitosis
 - Meiosis, spermatogenesis, and oogenesis
 d. Explain the significance of the discovery of nucleic acids. (DOK 1)
 e. Analyze and explain the structure and function of DNA and RNA in replication, transcription, translation, and DNA repair. (DOK 2)
 f. Cite examples to compare the consequences of the different types of mutations. (DOK 1)
 g. Draw conclusions about the importance and potential impacts of the process of gene transfer used in biotechnology. (DOK 3)

3. **Analyze the structure and function of DNA and RNA molecules.** (L, P)
 a. Cite evidence that supports the significance of Mendel’s concept of “particulate inheritance” to explain the understanding of heredity. (DOK 1)
 b. Apply classical genetics principles to solve basic genetic problems. (DOK 2)
 - Genes and alleles, dominance, recessiveness, the laws of segregation, and independent assortment
 - Inheritance of autosomal and sex-linked traits
- Inheritance of traits influenced by multiple alleles and traits with polygenic inheritance
- Chromosomal theory of inheritance

c. Apply population genetic concepts to summarize variability of multicellular organisms. (DOK 2)
- Genetic variability
- Hardy–Weinberg formula
- Migration and genetic drift
- Natural selection in humans

d. Distinguish and explain the applications of various tools and techniques used in DNA manipulation. (DOK 1)
- Steps in genetic engineering experiments
- Use of restriction enzymes
- Role of vectors in genetic research
- Use of transformation techniques

e. Research and present a justifiable explanation for the practical uses of biotechnology (e.g., chromosome mapping, karyotyping, and pedigrees). (DOK 2)

f. Develop and present a scientifically based logical argument for or against moral and ethical issues related to genetic engineering. (DOK 3)

g. Research genomics (human and other organisms), and predict benefits and medical advances that may result from the use of genome projects. (DOK 2)

Geology

GE1 Apply inquiry-based and problem-solving processes and skills to scientific investigations.

GE2 Develop an understanding of plate tectonics and geochemical and ecological processes that affect earth.

1. **Apply inquiry-based and problem-solving processes and skills to scientific investigations.**

a. Conduct a scientific investigation demonstrating safe procedures and proper care of laboratory equipment. (DOK 2)
 - Safety rules and symbols
 - Proper use and care of the compound light microscope, slides, chemicals, and so forth
 - Accuracy and precision in using graduated cylinders, balances, beakers, thermometers, and rulers

b. Formulate questions that can be answered through research and experimental design. (DOK 3)

c. Apply the components of scientific processes and methods in classroom and laboratory investigations (e.g., hypotheses, experimental design, observations, data analyses, interpretations, and theory development). (DOK 3)

d. Construct and analyze graphs (e.g., plotting points, labeling x- and y-axis, and creating appropriate titles and legends for circle, bar, and line graphs). (DOK 2)

e. Analyze procedures, data, and conclusions to determine the scientific validity of research. (DOK 3)
f. Recognize and analyze alternative explanations for experimental results and to make predictions based on observations and prior knowledge. (DOK 3)
g. Communicate and defend a scientific argument in oral, written, and graphic form. (DOK 3)

2. **Develop an understanding of plate tectonics and geochemical and ecological processes that affect earth.**
 a. Differentiate the components of the earth’s atmosphere and lithosphere. (DOK 1)
 b. Research and summarize explanations of how earth acquired its initial atmosphere and oceans. (DOK 2)
 c. Compare the causes and effects of internal and external components that shape earth’s topography. (DOK 2)
 - Physical weathering (e.g., atmospheric, glacial, etc.)
 - Chemical weathering agents (e.g., acid precipitation, carbon dioxide, oxygen, water, etc.)
 d. Develop an understanding of how plate tectonics create certain geologic features, materials, and hazards. (DOK 2)
 - Types of crustal movements and the resulting landforms (e.g., seafloor spreading, paleomagnetic measurements, and orogenesis)
 - Processes that create earthquakes and volcanoes
 - Asthenosphere
 e. Summarize the theories of plate development and continental drift, and describe the causes and effects involved in each. (DOK 2)
 f. Develop a logical argument to explain how geochemical and ecological processes (e.g., rock, hydrologic, carbon, and nitrogen) interact through time to cycle matter and energy and how human activity alters the rates of these processes (e.g., fossil fuel formation and combustion, damming, and channeling of rivers). (DOK 2)
 g. Interpret how the earth’s geological time scale relates to geological history, landforms, and life forms. (DOK 2)
 h. Research and describe different techniques for determining relative and absolute age of the earth (e.g., index of fossil layers, superposition, radiometric dating, etc.) (DOK 1)
 i. Summarize the geological activity of the New Madrid fault line, and compare and contrast it to geological activity in other parts of the world. (DOK 2)
 j. Identify and differentiate the major geological features in Mississippi (e.g., Delta, Coastal Areas, etc.). (DOK 1)
 k. Evaluate an emergency preparedness plan for natural disasters associated with crustal movement. (DOK 3)

Physical Science

PS 1	Apply inquiry-based and problem-solving processes and skills to scientific investigations.
PS 2	Describe and explain how forces affect motion.
PS 3	Demonstrate an understanding of general properties and characteristics of waves.
PS 4	Develop an understanding of the atom.
PS 5	Investigate and apply principles of physical and chemical changes in matter.
1. **Apply inquiry-based and problem-solving processes and skills to scientific investigations.**
 a. Use appropriate laboratory safety symbols and procedures to design and conduct a scientific investigation. (DOK 2)
 - Safety symbols and safety rules in all laboratory activities
 - Proper use and care of the compound light microscope
 - Accuracy and precision in using graduated cylinders, balances, beakers, thermometers, and rulers
 b. Identify questions that can be answered through scientific investigations. (DOK 3)
 c. Identify and apply components of scientific methods in classroom investigations. (DOK 3)
 - Predicting, gathering data, and drawing conclusions
 - Recording outcomes and organizing data from a variety of sources (e.g., scientific articles, magazines, student experiments, etc.)
 - Critically analyzing current investigations/problems using periodicals and scientific scenarios
 d. Interpret and generate graphs (e.g., plotting points, labeling x- and y-axis, and creating appropriate titles and legends for circle, bar, and line graphs). (DOK 2)
 e. Analyze procedures and data to draw conclusions about the validity of research. (DOK 3)
 f. Formulate and revise scientific explanations and models using logic and evidence (data analysis). (DOK 3)
 g. Communicate effectively to present and explain scientific results, using appropriate terminology and graphics. (DOK 3)

2. **Describe and explain how forces affect motion.**
 a. Demonstrate and explain the basic principles of Newton’s three laws of motion including calculations of acceleration, force, and momentum. (DOK 2)
 - Inertia and distance–time graphs to determine average speed
 - Net force (accounting for gravity, friction, and air resistance) and the resulting motion of objects
 - Effects of the gravitational force on objects on earth and effects on planetary and lunar motion
 - Simple harmonic motion (oscillation)
 b. Explain the connection between force, work, and energy. (DOK 2)
 - Force exerted over a distance (results in work done)
 - Force–distance graph (to determine work)
 - Network on an object that contributes to change in kinetic energy (work-to-energy theorem)
 c. Describe (with supporting details and diagrams) how the kinetic energy of an object can be converted into potential energy (the energy of position) and how energy is transferred or transformed (conservation of energy). (DOK 2)
 d. Draw and assess conclusions about charges and electric current. (DOK 2)
 - Static/current electricity and direct current/alternating current
 - Elements in an electric circuit that are in series or parallel
 - Conductors and insulators
e. Cite evidence and explain the application of electric currents and magnetic fields as they relate to their use in everyday living (e.g., the application of fields in motors and generators and the concept of electric current using Ohm’s law). (DOK 2)

3. **Demonstrate an understanding of general properties and characteristics of waves.**
 a. Differentiate among transverse, longitudinal, and surface waves as they propagate through a medium (e.g., string, air, water, and steel beam). (DOK 1)
 b. Compare properties of waves (e.g., superposition, interference, refraction, reflection, diffraction, and Doppler effect), and explain the connection among the quantities (e.g., wavelength, frequency, period, amplitude, and velocity). (DOK 2)
 c. Classify the electromagnetic spectrum’s regions according to frequency and/or wavelength, and draw conclusions about their impact on life. (DOK 2)
 - The emission of light by electrons when moving from higher to lower levels
 - Energy (photons as quanta of light)
 - Additive and subtractive properties of colors
 - Relationship of visible light to the color spectrum
 d. Explain how sound intensity is measured and its relationship to the decibel scale. (DOK 1)

4. **Develop an understanding of the atom.**
 a. Cite evidence to summarize the atomic theory. (DOK 1)
 - Models for atoms
 - Hund’s rule and Aufbau process to specify the electron configuration of elements
 - Building blocks of matter (e.g., proton, neutron, and electron) and elementary particles (e.g., positron, mesons, neutrinos, etc.)
 - Atomic orbitals (s, p, d, f) and their basic shapes
 b. Explain the difference between chemical and physical changes, and demonstrate how these changes can be used to separate mixtures and compounds into their components. (DOK 2)
 c. Research the history of the periodic table of the elements, and summarize the contributions that led to the atomic theory. (DOK 2)
 - Contributions of scientists (e.g., John Dalton, J. J. Thomson, Ernest Rutherford, Newton, Einstein, Neils, Bohr, Louis de Broglie, Erwin Schrödinger, etc.)
 - Technology (e.g., X-rays, cathode-ray tubes, and spectrosopes)
 - Experiments (e.g., gold-foil, cathode-ray, etc.)
 d. Utilize the periodic table to predict and explain patterns and draw conclusions about the structure, properties, and organization of matter. (DOK 2)
 - Atomic composition and valence electron configuration (e.g., atomic number, mass number of protons, neutrons, electrons, isotopes, and ions)
 - Periodic trends using the periodic table (e.g., valence, reactivity, and atomic radius)
 - Average atomic mass from isotopic abundance
 - Solids, liquids, and gases
Periodic properties of elements (e.g., metal/nonmetal/metalloid behavior, electrical/heat conductivity, electronegativity, electron affinity, ionization energy, and atomic/covalent/ionic radius) and how they relate to position in the periodic table

5. **Investigate and apply principles of physical and chemical changes in matter.**
 a. Write chemical formulas for compounds comprising monatomic and polyatomic ions. (DOK 1)
 b. Balance chemical equations. (DOK 2)
 c. Classify types of chemical reactions (e.g., composition, decomposition, single displacement, double displacement, combustion, and acid/base reactions). (DOK 2)

Physics I

PHYI 1 Apply inquiry-based and problem-solving processes and skills to scientific investigations.

PHYI 2 Develop an understanding of concepts related to forces and motion.

PHYI 3 Develop an understanding of concepts related to work and energy.

PHYI 4 Discuss the characteristics and properties of light and sound.

PHYI 5 Apply an understanding of magnetism, electric fields, and electricity.

PHYI 6 Analyze and explain concepts of nuclear physics.

1. **Investigate and apply principles of physical and chemical changes in matter.**
 a. Use current technologies such as CD-ROM, DVD, Internet, and online data search to explore current research related to a specific topic. (DOK 3)
 b. Clarify research questions, and design laboratory investigations. (DOK 3)
 c. Demonstrate the use of scientific inquiry and methods to formulate, conduct, and evaluate laboratory investigations (e.g., hypotheses, experimental design, observations, data analyses, interpretations, and theory development). (DOK 3)
 d. Organize data to construct graphs (e.g., plotting points, labeling x- and y-axis, and creating appropriate titles and legends for circle, bar, and line graphs), draw conclusions, and make inferences. (DOK 3)
 e. Evaluate procedures, data, and conclusions to critique the scientific validity of research. (DOK 3)
 f. Formulate and revise scientific explanations and models using logic and evidence (data analysis). (DOK 3)
 g. Collect, analyze, and draw conclusions from data to create a formal presentation using available technology (e.g., computers, calculators, SmartBoard, CBLs, etc.). (DOK 3)

2. **Develop an understanding of concepts related to forces and motion.**
 a. Use inquiry to investigate and develop an understanding of the kinematics and dynamics of physical bodies. (DOK 3)
 - Vector and scalar quantities
 - Vector problems (solved mathematically and graphically)
 - Vector techniques and free-body diagrams to determine the net force on a body when several forces are acting on it
 - Relations among mass, inertia, and weight
b. Analyze, describe, and solve problems by creating and utilizing graphs of one-dimensional motion (e.g., position, distance, displacement, time, speed, velocity, acceleration, and the special case of freefall). (DOK 2)

c. Analyze real-world applications to draw conclusions about Newton’s three laws of motion. (DOK 2)

d. Apply the effects of the universal gravitation law to graph and interpret the force between two masses, acceleration due to gravity, and planetary motion. (DOK 2)
 - Situations where \(g \) is constant (falling bodies)
 - Concept of centripetal acceleration undergoing uniform circular motion
 - Kepler’s third law
 - Oscillatory motion and the mechanics of waves

3. **Develop an understanding of concepts related to work and energy.**
 a. Explain and apply the conservation of energy and momentum. (DOK 2)
 - Concept of work and applications
 - Concept of kinetic energy, using the elementary work–energy theorem
 - Concept of conservation of energy with simple examples
 - Concepts of energy, work, and power (qualitatively and quantitatively)
 - Principles of impulse in inelastic and elastic collisions

 b. Analyze real-world applications to draw conclusions about mechanical potential energy (the energy of configuration). (DOK 3)

 c. Apply the principles of impulse, and compare conservation of momentum and conservation of kinetic energy in perfectly inelastic and elastic collisions. (DOK 1)

 d. Investigate and summarize the principles of thermodynamics. (DOK 2)
 - How heat energy is transferred from higher temperature to lower temperature until equilibrium is reached
 - Temperature and thermal energy as related to molecular motion and states of matter
 - Problems involving specific heat and heat capacity
 - First and second laws of thermodynamics as related to heat engines, refrigerators, and thermal efficiency

 e. Develop the kinetic theory of ideal gases, and explain the concept of Carnot efficiency. (DOK 2)

4. **Discuss the characteristics and properties of light and sound.**
 a. Describe and model the characteristics and properties of mechanical waves. (DOK 2)
 - Simple harmonic motion
 - Relationships among wave characteristics such as velocity, period, frequency, amplitude, phase, and wavelength
 - Energy of a wave in terms of amplitude and frequency.
 - Standing waves and waves in specific media (e.g., stretched string, water surface, air, etc.)

 b. Differentiate and explain the Doppler effect as it relates to a moving source and to a moving observer. (DOK 1)

 c. Explain the laws of reflection and refraction, and apply Snell’s law to describe the relationship between the angles of incidence and refraction. (DOK 2)
d. Use ray tracing and the thin lens equation to solve real-world problems involving object distance from lenses. (DOK 2)
e. Investigate and draw conclusions about the characteristics and properties of electromagnetic waves. (DOK 2)

5. **Apply an understanding of magnetism, electric fields, and electricity.**
 a. Analyze and explain the relationship between electricity and magnetism. (DOK 2)
 • Characteristics of static charge and how a static charge is generated
 • Electric field, electric potential, current, voltage, and resistance as related to Ohm’s law
 • Magnetic poles, magnetic flux and field, Ampère’s law, and Faraday’s law
 • Coulomb’s law
 b. Use schematic diagrams to analyze the current flow in series and parallel electric circuits, given the component resistances and the imposed electric potential. (DOK 2)
c. Analyze and explain the relationship between magnetic fields and electrical current by induction, generators, and electric motors. (DOK 2)

6. **Analyze and explain concepts of nuclear physics.**
 a. Analyze and explain the principles of nuclear physics. (DOK 1)
 • The mass number and atomic number of the nucleus of an isotope of a given chemical element
 • The conservation of mass and the conservation of charge
 • Nuclear decay
 b. Defend the wave–particle duality model of light, using observational evidence. (DOK 3)
 • Quantum energy and emission spectra
 • Photoelectric and Compton effects

Spatial Information Science

| SP 1 | Apply inquiry-based and problem-solving processes and skills to scientific investigations. |
| SP 2 | Develop an understanding of geographic information systems. |

1. **Demonstrate the basic concepts of global positioning systems (GPS). (E)**
 a. Use current technologies such as CD-ROM, DVD, Internet, and online data search to explore current research related to a specific topic. (DOK 3)
 b. Clarify research questions, and design laboratory investigations. (DOK 3)
 c. Demonstrate the use of scientific inquiry and methods to formulate, conduct, and evaluate laboratory investigations (e.g., hypotheses, experimental design, observations, data analyses, interpretations, and theory development). (DOK 3)
 d. Organize data to construct graphs (e.g., plotting points, labeling x- and y-axis, and creating appropriate titles and legends for circle, bar, and line graphs), draw conclusions, and make inferences. (DOK 3)
 e. Evaluate procedures, data, and conclusions to critique the scientific validity of research. (DOK 3)
 f. Formulate and revise scientific explanations and models using logic and evidence (data analysis). (DOK 3)
g. Collect, analyze, and draw conclusions from data to create a formal presentation using available technology (e.g., computers, calculators, SmartBoard, CBLs, etc.). (DOK 3)

2. **Demonstrate the basic concepts of remote sensing. (E, P)**
 a. Describe the characteristics of the electromagnetic spectrum.
 b. Using images and graphs, interpret the absorption/reflection spectrum.
 c. Distinguish between passive and active sensor systems.
 d. Analyze the effects of changes in spatial, temporal, and spectral resolution.
 e. Analyze the effects on images due to changes in scale.
 f. Identify the types of sensor platforms.

Zoology

<table>
<thead>
<tr>
<th>ZO 1</th>
<th>Apply inquiry-based and problem-solving processes and skills to scientific investigations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZO 2</td>
<td>Develop an understanding of levels of organization and animal classification.</td>
</tr>
<tr>
<td>ZO 3</td>
<td>Differentiate among animal life cycles, behaviors, adaptations, and relationships.</td>
</tr>
<tr>
<td>ZO 4</td>
<td>Demonstrate an understanding of the principles of animal genetic diversity and evolution.</td>
</tr>
</tbody>
</table>

1. **Apply inquiry-based and problem-solving processes and skills to scientific investigations.**
 a. Conduct a scientific investigation demonstrating safe procedures and proper care of laboratory equipment. (DOK 2)
 - Safety rules and symbols
 - Proper use and care of the compound light microscope, slides, chemicals, and so forth
 - Accuracy and precision in using graduated cylinders, balances, beakers, thermometers, and rulers
 b. Formulate questions that can be answered through research and experimental design. (DOK 3)
 c. Apply the components of scientific processes and methods in classroom and laboratory investigations (e.g., hypotheses, experimental design, observations, data analyses, interpretations, and theory development). (DOK 3)
 d. Construct and analyze graphs (e.g., plotting points, labeling x- and y-axis, and creating appropriate titles and legends for circle, bar, and line graphs). (DOK 2)
 e. Analyze procedures, data, and conclusions to determine the scientific validity of research. (DOK 3)
 f. Recognize and analyze alternative explanations for experimental results and to make predictions based on observations and prior knowledge. (DOK 3)
 g. Communicate and defend a scientific argument in oral, written, and graphic form. (DOK 3)

2. **Develop an understanding of levels of organization and animal classification.**
 a. Explain how organisms are classified, and identify characteristics of major groups. (DOK 1)
 - Levels of organization of structures in animals (e.g., cells, tissues, organs, and systems)
b. Identify and describe characteristics of the major phyla. (DOK 1)
 - Symmetry and body plan
 - Germ layers and embryonic development
 - Organ systems (e.g., digestive, circulatory, excretory, and reproductive)
 - Locomotion and coordination

c. Distinguish viruses from bacteria and protists, and give examples. (DOK 1)

d. Differentiate among the characteristics of bacteria, archaea, and eucarya. (DOK 1)
 - Phylogenetic sequencing of the major phyla
 - Invertebrate characteristics (e.g., habitat, reproduction, body plan, and locomotion) of the following phyla: Porifera, Cnidarians, Nematoda, Annelida, Platyhelminthes, Arthropoda, Insecta, Crustacea, Arachnida, Mollusca [Bivalvia and Gastropoda], and Echinodermata
 - Vertebrate characteristics (e.g., habitat, reproduction, body plan, and locomotion) of the following classes: Agnatha, Chondrichthyes, Osteichthyes, Amphibia, Reptilia, Aves, and Mammalia

3. **Differentiate among animal life cycles, behaviors, adaptations, and relationships.**
 a. Describe life cycles, alternation of generations, and metamorphosis of various animals, and evaluate the advantages and disadvantages of asexual and sexual reproduction. (DOK 1)
 b. Describe and explain concepts of animal behavior, and differentiate between learned and innate behavior. (DOK 1)
 - Division of labor within a group of animals
 - Communication within animals groups
 - Degree of parental care given in animal groups
 c. Evaluate the unique protective adaptations of animals as they relate to survival. (DOK 2)
 d. Compare and contrast ecological relationships, and make predictions about the survival of populations under given circumstances. (DOK 3)
 - Terrestrial and aquatic ecosystems
 - Herbivores, carnivores, omnivores, decomposers, and other feeding relationships
 - Symbiotic relationships such as mutualism, commensalisms, and parasitism
 e. Contrast food chains and food webs. (DOK 2)

4. **Demonstrate an understanding of the principles of animal genetic diversity and evolution.**
 a. Categorize and explain sources of genetic variation on the cellular level (e.g., mutations, crossing over, and nondisjunction) and the population level (e.g., nonrandom mating, migration, etc.). (DOK 2)
 - Relationship between natural selection and evolution
 - Mutations, crossing over, non-disjunction
 - Nonrandom mating, migration, and so forth
 - Effects of genetic drift on evolution
 b. Develop a logical argument defending or refuting issues related to genetic engineering of animals. (DOK 3)
Source: *MS Code §37-1-3, 37-31-103*